The Sun: Part 2. Temperature at surface = 5800 K => yellow (Wien’s Law) Temperature at center = 15,000,000 K Average density = 1.4 g/cm 3 Density at center.

Slides:



Advertisements
Similar presentations
What is the fate of our sun and other stars?
Advertisements

Universe Eighth Edition Universe Roger A. Freedman William J. Kaufmann III CHAPTER 16 Our Star, the Sun CHAPTER 16 Our Star, the Sun.
The Sun The Sun is a star. The Sun is a star. It is 4,500 million years old It is 4,500 million years old It takes 8 minutes for its light to reach.
Astro 101 Fall 2013 Lecture 7 T. Howard. The Sun The Sun in X-rays over several years The Sun is a star: a shining ball of gas powered by nuclear fusion.
Astronomy Lecture The Sun: Our Extraordinary Ordinary Star.
Our Star, the Sun Chapter Eighteen.
Chapter 8 The Sun – Our Star.
The Sun, our favorite star! WE CAN SEE IT REALLY WELL. The Sun is the basis for all of our knowledge of stars. Why?
Review Vocabulary magnetic field: the portion of space near a magnetic or current-carrying body where magnetic forces can be detected The Sun contains.
The Sun’s Structure & Features Chapter 26.1 Chapter % H 28% He The sun is made up of gas Temps: 15 million K at core / 5000 K at surface The sun.
Clicker Question: Earth’s average density is about the same as: A: water B: an iron meteorite C: balsa wood D: a chunk of volcanic rock.
Guiding Questions 1.What is the source of the Sun’s energy? 2.What is the internal structure of the Sun? 3.How can we measure the properties of the Sun’s.
Chapter 7 The Sun. Solar Prominence – photo by SOHO spacecraft from the Astronomy Picture of the Day site link.
The star we see but seldom notice
The Sun- Our Star. The Sun- Our Star Star Parts: core radiation zone convection zone photosphere chromosphere corona solar wind.
Slide 1. Slide 2 The Sun – Our Star Chapter 8 Slide 3 The preceding chapter described how we can get information from a spectrum. In this chapter, we.
The Sun The Sun in X-rays over several years The Sun is a star: a shining ball of gas powered by nuclear fusion. Luminosity of Sun = 4 x erg/s =
Clicker Question: Earth’s average density is about the same as:
Astronomy Picture of the Day. The Sun Core temperature - 15 million K Surface temperature K 99.9% of all of the matter in the solar system Entirely.
Clicker Question: Which planet most resembles our Moon in surface features and atmosphere: A: Mercury B: Venus C: Mars D: Uranus.
Announcements Online calendar has been updated – check it out Homework for Chs. 6, 7, & 8 will post by tomorrow Test 2 score have posted. If you did not.
Conversations with the Earth Tom Burbine
The Sun’s Energy Composition of the Sun
Solar Rotation Lab 3. Differential Rotation The sun lacks a fixed rotation rate Since it is composed of a gaseous plasma, the rate of rotation is fastest.
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2 Doppler/ Sunspots/ Interior.
Our Sun. Why do we care about the Sun... - Light, heat, life - Space weather solar wind (1,000,000 mph) flares (UV, x-ray radiation) disturb Earth's magnetic.
The Sun. Solar Prominence Sun Fact Sheet The Sun is a normal G2 star, one of more than 100 billion stars in our galaxy. Diameter: 1,390,000 km (Earth.
Pluto and the Sun. Pluto Predicted to exist by remaining irregularities in Uranus' orbit. Discovered in 1930 by Clyde Tombaugh ( ). Irregularities.
The Sun The Sun is a star Huge ball of glowing ionized gas… plasma. Gravity vs. Nuclear Fusion Gravity wants to crush the star Fusion wants to explode.
Chapter 9 The Sun. 9.4 The Active Sun Sunspots: appear dark because slightly cooler than surroundings:
The Sun: Part 3 and Measuring the Stars: Part 1. Net result: 4 protons → 4 He + 2 neutrinos + energy Hydrostatic Equilibrium: pressure from fusion reactions.
From the Core to the Corona – a Journey through the Sun
Our Star, the Sun Chapter Eighteen. The Sun’s energy is generated by thermonuclear reactions in its core The energy released in a nuclear reaction corresponds.
The Sun ROBOTS Summer Solar Structure Core - the center of the Sun where nuclear fusion releases a large amount of heat energy and converts hydrogen.
OUR SUN THE CLOSEST STAR. Composition of the Sun The Sun is composed of at least 80 of the elements found on Earth. Sun is mostly composed of 91.2% Hydrogen,
The Sun 1 of 200 billion stars in the Milky Way. Our primary source of energy.
Rotation Period = 25 days at the equator & 29 days near the pole Composition = 99% hydrogen and helium State = gaseous (plasma)
Unit 2 Lesson 3 The Sun Copyright © Houghton Mifflin Harcourt Publishing Company.
THE SUN. The Sun The sun has a diameter of 900,000 miles (>100 Earths could fit across it) >1 million Earths could fit inside it. The sun is composed.
The Sun Stellar Evolution: Low Mass Stars White Dwarfs
The Sun: Part 2. Temperature at surface = 5800 K => yellow (Wien’s Law) Temperature at center = 15,000,000 K Average density = 1.4 g/cm 3 Density at center.
Solar Properties Has more than 99% the mass of our solar system Has more than 99% the mass of our solar system Diameter: 1,390,000 km Diameter: 1,390,000.
1. Name one part of the sun. 2. Is the sun a solid, liquid or gas? 3. How hot was the center of the sun when it officially became a star?
The Sun, our favorite star!
The Sun – Our Star Our sun is considered an “average” star and is one of the 100 BILLION stars that make up the Milky Way galaxy. But by no MEANS does.
A ________________ is a huge mass made of very hot gases (____________________ and ____________________) which produces energy through ________ ___________.
Chapter 10 Our Star A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun’s structure?
Chapter 9 The Sun.
The Sun Distance from Earth: 150 million km OR 93 million miles Size: 1.4 million km in diameter Age: 4.5 billion years old, halfway through its 10 billion.
The Solar System. Nebula Theory (our solar system) The solar system started from the spinning and condensing of a cloud of dust and gas. The greatest.
The Sun, our favorite star!
Chapter 14 Our Star.
Sun Notes. Characteristics CLOSEST star to earth CLOSEST star to earth The bright star in the center is Proxima Centauri.
A105 Stars and Galaxies  Homework 6 due today  Next Week: Rooftop Session on Oct. 11 at 9 PM  Reading: 54.4, 55, 56.1, 57.3, 58, 59 Today’s APODAPOD.
Reading Unit 31, 32, 51. The Sun The Sun is a huge ball of gas at the center of the solar system –1 million Earths would fit inside it! –Releases the.
Outer Layers of the Sun Photosphere –Limb darkening –Sun spots Chromosphere Corona Prominences, flares, coronal mass ejections Reading
© 2017 Pearson Education, Inc.
The Sun.
OUR SUN.
The Sun and Our Earth The Structure of Our Sun The Energy of Our Sun
Sun Notes.
Clicker Question: Which planet most resembles our Moon in surface features and atmosphere: A: Mercury B: Venus C: Mars D: Uranus.
What is the fate of our sun and other stars?
Astronomy-Part 8 Notes Here Comes The Sun
The Sun: Our Star.
The Sun and Our Earth The Structure of Our Sun The Energy of Our Sun
Do Now 12/9/09 What is the sun made of???
Brain Pop The Sun
The Sun.
The Centre of the Solar System Earth Science 11
Presentation transcript:

The Sun: Part 2

Temperature at surface = 5800 K => yellow (Wien’s Law) Temperature at center = 15,000,000 K Average density = 1.4 g/cm 3 Density at center = 160 g/cm 3 Composition: 71% of mass is H 27% He 1% Oxygen 1% everything else Rotation period = 27 days at equator 31 days at poles DEMO: Switch on the SUN! Sun during solar eclipse Jan 2011

In 1960s Ray Davis and John Bahcall measured the neutrino flux from the Sun and found it to be lower than expected (by 30-50%) Confirmed in subsequent experiments Theory of p-p fusion well understood Solar interior well understood Solar neutrino problem

Theoriticians like Bruno Pontecorvo realized There was more than one type of neutrino Neutrinos could change from one type to another Confirmed by Super-Kamiokande experiment in Japan in 1998 Answer to the Solar neutrino problem 50,000 gallon tank Total number of neutrinos agrees with predictions

How does energy get from core to surface? core "radiative zone": photons scatter off nuclei and electrons, slowly drift outwards: "diffusion". "surface" or photosphere: gas density low enough so photons can escape into space. photon path "convection zone" some electrons bound to nuclei => radiation can't get through => heats gas, hot gas rises, cool gas falls

Can see rising and falling convection cells => granulation. Bright granules hotter and rising, dark ones cooler and falling. (Remember convection in Earth's atmosphere, interior and Jupiter). Granules about 1000 km across Why are cooler granules dark? Stefan's Law: brightness  T 4

Can see rising and falling convection cells => granulation. Bright granules hotter and rising, dark ones cooler and falling. (Remember convection in Earth's atmosphere, interior and Jupiter). Granules about 1000 km across Why are cooler granules dark? Stefan's Law: brightness  T 4

The (Visible) Solar Spectrum Spectrum of the Sun shows: 1) The Black-body radiation 2) Absorption lines (atoms absorbing photons at specific wavelengths). 10,000's of lines from 67 elements, in various excited or ionized states. Again, this radiation comes from photosphere, the visible surface of the Sun. Elements weren’t made in Sun, but in previous stellar generations

Star 'Atmosphere', atoms and ions absorb specific wavelengths of the black- body spectrum Interior, hot and dense, fusion generates radiation with black-body spectrum

Sunspots Roughly Earth-sized Last ~2 months Usually in pairs Follow solar rotation

Sunspots They are darker because they are cooler (4500 K vs K). Related to loops of the Sun's magnetic field. radiation from hot gas flowing along magnetic field loop at limb of Sun.

Filament Ejection Movie

Sunspot numbers vary on a 11 year cycle.

0.1% variation from maximum to minimum

Sun's magnetic field changes direction every 11 years. Maximum sunspot activity occurs about halfway between reversals.

Above the photosphere, there is the chromosphere and... The Corona Best viewed during eclipses. T = 10 6 K Density = g/cm 3 only!

We expect X-rays from gas at this temperature. X-ray brightness varies over 11-year Solar Cycle: coronal activity and sunspot activity go together. Yohkoh X-ray satellite

The Solar Wind At top of corona, typical gas speeds are close to escape speed => Sun losing gas in a solar wind. Wind escapes from "coronal holes", seen in X-ray images. Wind speed 500 km/sec (takes a few days to reach Earth) tons/s lost. But Sun has lost only 0.1% of its mass from solar wind.

Space Weather Today’s forecast: solar wind velocity = 297km/s density = 0.6 protons/cm 3 Sunspot number: 0 days without a sunspot since: 1 day For update see List of recent and upcoming Near-miss encounters and space related news.

Active Regions Prominences: Loops of gas ejected from surface. Anchored in sunspot pairs. Last for hours to weeks. Flares: A more energetic eruption. Lasts for minutes. Less well understood. Prominences and flares occur most often at maximum of Solar Cycle.

Space weather and solar science ● Coronal Mass Ejections: solar science and ultimately predicting space weather

Solar Probe in 2018