Chapter 12 The Cell Cycle. Fig. 12-UN1 Telophase and Cytokinesis Anaphase Metaphase Prometaphase Prophase MITOTIC (M) PHASE Cytokinesis Mitosis S G1G1.

Slides:



Advertisements
Similar presentations
Chapter 12 The Cell Cycle.
Advertisements

CH 12 NOTES, part 2: Regulation of the Cell Cycle (12.3)
Chapter 12: The Cell Cycle Cell cycle: life of a cell from its formation from a dividing parent cell until its own division into 2 cells Cell cycle: life.
AP Biology Mitosis.
Chapter 8 Biology CPA Thank you, Miss Colabelli!
Life is based on the reproduction of cells, or cell division
The Cell Cycle.
BIO 2, Lecture 9 REPRODUCTION I: ASEXUAL REPRODUCTION: BINARY FISSION, MITOSIS, AND THE CELL CYCLE.
Chapter 12 The Cell Cycle.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle. Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving.
Overview: The Key Roles of Cell Division
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Cell Growth and Reproduction Cell Cycle. Growth in Organisms For an organism to grow, its cells divide instead of getting larger.
Chapter 12 The Cell Cycle. Fig. 12-UN1 Telophase and Cytokinesis Anaphase Metaphase Prometaphase Prophase MITOTIC (M) PHASE Cytokinesis Mitosis S G1G1.
Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter (reproduction is.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 12 The Cell Cycle.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Warm-up 1. Place the following terms in order as they occur: prometaphase, G2, telophase, prophase, anaphase, G1, metaphase, S, and cytokinesis. 2. Answer.
Chapter 12 G1G1 G2G2 S (DNA synthesis) INTERPHASE Cytokinesis MITOTIC (M) PHASE Mitosis The Cell Cycle.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for –Development from a fertilized.
100 µm200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal 1.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 9 b The Cell Cycle. Cell Division: Key Terms b Genome: cell’s genetic information b Somatic (body cells) cells b Gametes (germ cells): sperm and.
Chapter 12.  The ability of organisms to produce more of their own kind best distinguishes living things from nonliving matter  The continuity of life.
Fig Origin of replication Two copies of origin E. coli cell Bacterial chromosome Plasma membrane Cell wall Origin.
Chapter 12: The Cell Cycle
The Cell Cycle. Key Concepts Most division results in genetically identical cells Cell cycle consists of alternating periods of mitosis and interphase.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of.
Cell reproduction and the division of the NUCLEUS and CYTOPLASM.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle. 2 Fig. 12-UN1 Telophase and Cytokinesis Anaphase Metaphase Prometaphase Prophase MITOTIC (M) PHASE Cytokinesis Mitosis S G1G1.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Cell Cycle. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Eukaryotic cell division consists of: – ________, the division.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Key Roles of Cell Division The continuity of life is based upon the reproduction.
CHAPTER 12  THE CELL CYCLE I. The key roles of cell division A. Reproduction 1. Prokaryotic 2. Eukaryotic a. Plants & some animals B. Development 1. Zygote.
SC430 Molecular Cell Biology Welcome to Unit 8 Seminar with Dr Hall-Pogar Tonight we will discuss –Cell Cycle –I will be available at AIM:KaplanHallPogar.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Regulation of the Cell Cycle & Cancer. Concept 9.3: The eukaryotic cell cycle is regulated by a molecular control system The frequency of cell division.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
BIO 3A Fall 2011 Cell Cycle Chapter 12. Overview: The Key Roles of Cell Division The ability of organisms to produce more of their own kind best distinguishes.
10 µm Fig Nucleus Chromatin condensing Nucleolus Chromosomes
Fig Figure 12.1 How do a cell’s chromosomes change during cell division?
The Cell Cycle Chapter 12.
The Key Roles of Cell Division
Chapter 12 The Cell Cycle.
Cell Cycle Regulation and Cancer
Overview: The Key Roles of Cell Division
CH 12 NOTES, part 2: Regulation of the Cell Cycle (12.3)
Chapter 12: The Cell Cycle
How Do Cells Divide?.
Nonkinetochore microtubules from opposite poles overlap and push against each other, elongating the cell In telophase, genetically identical daughter nuclei.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
The Cell Cycle Chapter 12.
The Cell Cycle Chapter 12.
Chapter 12 The Cell Cycle.
Presentation transcript:

Chapter 12 The Cell Cycle

Fig. 12-UN1 Telophase and Cytokinesis Anaphase Metaphase Prometaphase Prophase MITOTIC (M) PHASE Cytokinesis Mitosis S G1G1 G2G2

Fig EXPERIMENT Kinetochore RESULTS CONCLUSION Spindle pole Mark Chromosome movement Kinetochore Microtubule Motor protein Chromosome Tubulin subunits

Binary Fission Prokaryotes (bacteria and archaea) reproduce by a type of cell division called binary fission In binary fission, the chromosome replicates (beginning at the origin of replication), and the two daughter chromosomes actively move apart

Fig Origin of replication Two copies of origin E. coli cell Bacterial chromosome Plasma membrane Cell wall Origin

The Evolution of Mitosis Since prokaryotes evolved before eukaryotes, mitosis probably evolved from binary fission Certain protists exhibit types of cell division that seem intermediate between binary fission and mitosis

Fig (a) Bacteria Bacterial chromosome Chromosomes Microtubules Intact nuclear envelope (b) Dinoflagellates Kinetochore microtubule Intact nuclear envelope (c) Diatoms and yeasts Kinetochore microtubule Fragments of nuclear envelope (d) Most eukaryotes

Concept 12.3: The eukaryotic cell cycle is regulated by a molecular control system The frequency of cell division varies with the type of cell These cell cycle differences result from regulation at the molecular level

Evidence for Cytoplasmic Signals The cell cycle appears to be driven by specific chemical signals present in the cytoplasm Some evidence for this hypothesis comes from experiments in which cultured mammalian cells at different phases of the cell cycle were fused to form a single cell with two nuclei

Masui and Markert’s study of oocyte maturation led to the identification of cyclin and cyclin-dependent kinase Frog oocytes are dormant in G 2 Progesterone makes oocytes progress to M Progesterone must be affecting triggers to progress to M 3 groups of donor oocytes –Progesterone for 2 hours –Progesterone for 12 hours –No progesterone Inject donor oocyte cytosol into recipient oocytes Only 12 hour donor caused progression Maturation Promoting Factor (MPF) is mitotic cyclin and cyclin-dependent kinase

Fig Experiment 1 Experiment 2 EXPERIMENT RESULTS SG1G1 M G1G1 M M S S When a cell in the S phase was fused with a cell in G 1, the G 1 nucleus immediately entered the S phase—DNA was synthesized. When a cell in the M phase was fused with a cell in G 1, the G 1 nucleus immediately began mitosis—a spindle formed and chromatin condensed, even though the chromosome had not been duplicated.

The Cell Cycle Control System The sequential events of the cell cycle are directed by a distinct cell cycle control system, which is similar to a clock The cell cycle control system is regulated by both internal and external controls The clock has specific checkpoints where the cell cycle stops until a go-ahead signal is received

Fig S G1G1 M checkpoint G2G2 M Control system G 1 checkpoint G 2 checkpoint

For many cells, the G 1 checkpoint seems to be the most important one If a cell receives a go-ahead signal at the G 1 checkpoint, it will usually complete the S, G 2, and M phases and divide If the cell does not receive the go-ahead signal, it will exit the cycle, switching into a nondividing state called the G 0 phase

Fig G1G1 G0G0 G 1 checkpoint (a)Cell receives a go-ahead signal G1G1 (b) Cell does not receive a go-ahead signal

The Cell Cycle Clock: Cyclins and Cyclin-Dependent Kinases Two types of regulatory proteins are involved in cell cycle control: cyclins and cyclin-dependent kinases (Cdks) The activity of cyclins and Cdks fluctuates during the cell cycle MPF (maturation-promoting factor) is a cyclin-Cdk complex that triggers a cell’s passage past the G 2 checkpoint into the M phase

Fig Protein kinase activity (– ) % of dividing cells (– ) Time (min) RESULTS

Fig M G1G1 S G2G2 M G1G1 SG2G2 M G1G1 MPF activity Cyclin concentration Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle Degraded cyclin Cdk G1G1 S G2G2 M G2G2 checkpoint Cyclin is degraded Cyclin MPF (b) Molecular mechanisms that help regulate the cell cycle Cyclin accumulation

Fig a Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle Cyclin concentration MPF activity M M M SS G1G1 G1G1 G1G1 G2G2 G2G2

Fig b Cyclin is degraded Cdk MPF Cdk M S G1G1 G 2 checkpoint Degraded cyclin Cyclin (b) Molecular mechanisms that help regulate the cell cycle G2G2 Cyclin accumulation

Stop and Go Signs: Internal and External Signals at the Checkpoints An example of an internal signal is that kinetochores not attached to spindle microtubules send a molecular signal that delays anaphase Some external signals are growth factors, proteins released by certain cells that stimulate other cells to divide For example, platelet-derived growth factor (PDGF) stimulates the division of human fibroblast cells in culture

Fig a Receptor Growth factor G protein GTP Ras GTP Ras Protein kinases (phosphorylation cascade) Transcription factor (activator) DNA Hyperactive Ras protein (product of oncogene) issues signals on its own MUTATION NUCLEUS Gene expression Protein that stimulates the cell cycle (a) Cell cycle–stimulating pathway

Fig b MUTATION Protein kinases DNA DNA damage in genome Defective or missing transcription factor, such as p53, cannot activate transcription Protein that inhibits the cell cycle Active form of p53 UV light (b) Cell cycle–inhibiting pathway 2 3 1

Fig Petri plate Scalpels Cultured fibroblasts Without PDGF cells fail to divide With PDGF cells prolifer- ate 10 µm

Another example of external signals is density-dependent inhibition, in which crowded cells stop dividing Most animal cells also exhibit anchorage dependence, in which they must be attached to a substratum in order to divide

Fig Anchorage dependence Density-dependent inhibition (a) Normal mammalian cells (b) Cancer cells 25 µm Cancer cells exhibit neither density-dependent inhibition nor anchorage dependence

Loss of Cell Cycle Controls in Cancer Cells Cancer cells do not respond normally to the body’s control mechanisms Cancer cells may not need growth factors to grow and divide: –They may make their own growth factor –They may convey a growth factor’s signal without the presence of the growth factor –They may have an abnormal cell cycle control system

A normal cell is converted to a cancerous cell by a process called transformation Cancer cells form tumors, masses of abnormal cells within otherwise normal tissue If abnormal cells remain at the original site, the lump is called a benign tumor Malignant tumors invade surrounding tissues and can metastasize, exporting cancer cells to other parts of the body, where they may form secondary tumors

Fig Tumor A tumor grows from a single cancer cell. Glandular tissue Lymph vessel Blood vessel Metastatic tumor Cancer cell Cancer cells invade neigh- boring tissue. Cancer cells spread to other parts of the body. Cancer cells may survive and establish a new tumor in another part of the body