Gigaton Volume Detector in Lake Baikal: status of the project Zh.-A. Dzhilkibaev (INR, Moscow) Zh.-A. Dzhilkibaev (INR, Moscow) for the Baikal Collaboration.

Slides:



Advertisements
Similar presentations
P. Sapienza, Laboratori Nazionali del Sud (INFN)NOW2004, sept A km 3 detector in the Mediterranean: status of NEMO Motivation for a km 3 detector.
Advertisements

Lake Baikal Neutrino Experiment Present and Future G.V.Domogatsky (INR, Moscow) for the Baikal collaboration.
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Jan 2009 U. Katz: Astroparticle Physics 1 What is KM3NeT – the Vision  Future cubic-kilometre sized neutrino telescope in the Mediterranean Sea  Exceeds.
AMANDA Lessons Antarctic Muon And Neutrino Detector Array.
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
A. BELIAS, NESTOR Institute, Pylos, Greece TeVPA 2009, July 13-17, SLAC1 KM3NeT, a deep sea neutrino telescope in the Mediterranean Sea KM3NeT objectives.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
Prototype string for a km3 Baikal neutrino telescope Roma International Conference on Astroparticle Physics V.Aynutdinov, INR RAS for the Baikal Collaboration.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope E. Osipova -MSU (Moscow) for the Baikal Collaboration (Workshop, Uppsala,
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
Moscow, V. Aynutdinov, INR RAS for Baikal collaboration The Baikal neutrino telescope: The Baikal neutrino telescope: Physics results and future.
PINGU – An IceCube extension for low-energy neutrinos Uli Katz on behalf of the PINGU Collaboration European Strategy for Neutrino Oscillation.
C.DistefanoCRIS 2008 – Salina, September The KM3Net Consortium Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud Towards a km3-scale.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
Neutrinos as Cosmic Messengers in the Era of IceCube, ANTARES and KM3NeT Uli Katz ECAP / Univ. Erlangen Vulcano Workshop 2012 Frontier Objects.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
Piera Sapienza – VLVNT Workshop, 5-8 october 2003, Amsterdam Introduction and framework Simulation of atmospheric  (HEMAS and MUSIC) Response of a km.
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
XXIII International Conference on Neutrino Physics and Astrophysics 2008 Christchurch, New Zealand Contacts:
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
Data acquisition system for the Baikal-GVD neutrino telescope Denis Kuleshov Valday, February 3, 2015.
AMANDA and IceCube neutrino telescopes at the South Pole Per Olof Hulth Stockholm University.
Baikal Neutrino Experiment Vladimir Aynutdinov for the Baikal Collaboration Athens, October 13, 2009.
Байкальский нейтринный эксперимент Г.В.Домогацкий 1 23 декабря 2009г. Москва.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
STATUS OF BAIKAL NEUTRINO EXPERIMENT: Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for the Baikal Collaboration HECR’ May.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Status of the Baikal Neutrino Telescope NT200+ VLVNT2 Workshop, Catania, Ralf Wischnewski DESY, Zeuthen Outline: - Motivation / Methods - The.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
R. Coniglione, VLVnT08, Toulon April ‘08 KM3NeT: optimization studies for a cubic kilometer neutrino detector R. Coniglione P. Sapienza Istituto.
Baikal-GVD: status and plans Denis Kuleshov Denis Kuleshov INR, Moscow, Oct 28, 2015.
Tunka Experiment: Towards 1км 2 EAS Cherenkov Array B.K.Lubsandorzhiev for TUNKA Collaboration.
Large-scale Underwater/ice Neutrino Telescopes G. Domogatsky (INR RAN, Moscow)
BAIKAL-GVD: status, results and plans Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Amsterdam, October 17,
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
The BAIKAL Neutrino Telescope: from NT200 to NT th ICRC Pune, India, Ralf Wischnewski DESY-Zeuthen.
A Device for Detection of Acoustic Signals from Super High Energy Neutrinos Presenter: Presenter: G.L.Pan'kov Applied Physics Institute of Irkutsk State.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
The BAIKAL-GVD project of a km3-scale neutrino telescope in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Beijing, 17 August, International.
Isabella Amore VLV T08, Toulon, France April 2008 International Workshop on a Very Large Volume Neutrino Telescope for the Mediterranean Sea Results.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Gigaton Volume Detector in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Cassis, May 3, th International Workshop on Ring Imaging.
High energy neutrino acoustic detection activities in Lake Baikal: status and plans N.Budnev for the Baikal Collaboration Irkutsk State University, Russia.
Prototyping Phase of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Rome, May,
THE BAIKAL NEUTRINO EXPERIMENT: STATUS, SELECTED PHYSICS RESULTS, AND PERSPECTIVES Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for.
Alexander Kappes ECAP, Universität Erlangen-Nürnberg for the KM3NeT Consortium 2009 EPS HEP, Krakow, 16. July 2009 The KM3NeT project: Towards a km 3 -scale.
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
The prototype string for the km3 scale Baikal neutrino telescope VLVnT April 2008 Vladimir Aynutdinov, INR RAS for the Baikal Collaboration for.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Status of the Baikal-GVD experiment
P.Kooijman, UVA-GRAPPA, UU, Nikhef
Status of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow),
Data acquisition system for the Baikal-GVD neutrino telescope
An expected performance of Dubna neutrino telescope
The Antares Neutrino Telescope
Baikal-GVD (technical report)
Performance of the AMANDA-II Detector
MC studies of the KM3NeT physics performance Rezo Shanidze
Presentation transcript:

Gigaton Volume Detector in Lake Baikal: status of the project Zh.-A. Dzhilkibaev (INR, Moscow) Zh.-A. Dzhilkibaev (INR, Moscow) for the Baikal Collaboration for the Baikal Collaboration QUARKS-2010, Kolomna, 6-12 June, 2010

1. Institute for Nuclear Research, Moscow, Russia. 2. Irkutsk State University, Russia. 3. Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia. 4. DESY-Zeuthen, Zeuthen, Germany. 5. Joint Institute for Nuclear Research, Dubna, Russia. 6. Nizhny Novgorod State Technical University, Russia. 7. St.Petersburg State Marine University, Russia. 8. Kurchatov Institute, Moscow, Russia.

Telescope (E,  ) input water, ice Physics (  E,   ) Target muon (  ) cascade ( e     ) output muoncascade E,E, muons (long tracks) -   ~ 0.3 o – 1 o,   ~ 0.3logE cascades –   > 30 o (ice);   ~ 3 o – 6 o (water) ! Cherenkov radiation cascades muon Absorption Scattering Detection Principle – M. Markov 1960 energy, direction resolution L s < 3 m L s ~ m 42 o

A NT200+/Baikal-GVD (~2017) N N KM3NeT (~2017) /IceCube Amanda/IceCube(~2011) ANTARES 73 Strings in operation

Precursors of km3-scale neutrino telescopes: NT200 AMANDA ANTARES (Baikal) (South Pole) (Mediterranean Sea) Results: Astrophysics HE-neutrinos WIMPs in the Sun & the Earth Neutrinos from GRB Atm. neutrino flux Magnetic monopoles etc. Obtained results prove the detection principle and motivate the requirements of km3-scale facilities IceCube (South Pole) GVD (Lake Baikal) KM3NeT (Mediterranean Sea) MACRO Limits on all flavor HE neutrino flux

IceCube (South Pole) 4800 Optical Modules 80 Strings m depth ~1 km 3 instrumented volume Ice-Top – shower detection Deep Core – low-energy neutrinos 6 additional strings with dense OM spacing yr (Deep Core) – installed IceCube will be completed in 2011/ : 13 Strings : 8 Strings : 1 String : 18 Strings 1450 m 2450 m : 18+1 Strings

KM3NeT (Mediterranean Sea – TDR 2010)  8-inch PMT31 3-inch PMTs Optical Module ? Research Infrastructure Detection Unit (DU) ? Buoy OM Slender String 300 DU SITE ? Flexible tower 127 DU

Next Steps and Timeline  Next steps: Prototyping and design decisions - organised in Preparatory Phase framework - final decisions require site selection - expected to be achieved in ~18 months  Timeline: CDR: TDR: Mar 2012 Design decision Construction Data taking 2015

4км from the shore 1366 м depth Shore Station Location of the BAIKAL neutrino telescope

Location: - Northern hemisphere – GC (~18h/day) and Galactic Plane survey - Flat 1350 m depth Lake bed (>3 km from the shore) – allows ~ 30 km 3 Instr. Volume! Strong ice cover during ~2 months: - Telescope installation, maintenance, upgrade and rearrangement - Installation & test of a new equipment - All connections are done on dry - Fast shore cable installation (3-4 days) Water optical properties: - Absorption length – m - Scattering length – m - Moderately low background in fresh water Water properties allow detection of all flavor neutrinos with high direction-energy resolution! Site properties ice slot cable tractor with ice cutter cable layer Shore cable deployment

Since 1980 Site tests and early R&D started 1990 Technical Design Report NT NT NT36 started: - the first underwater array - the first neutrino events NT200 commissioned: 1998 NT200 commissioned: start full physics program. NT200+ commissioned (NT200 & 3 outer strings) NT200+ commissioned (NT200 & 3 outer strings) Start R&D toward the Gigaton Volume Detector (GVD) 2008 In-situ test of GVD electronics: 6 new technology optical modules 2008 In-situ test of GVD electronics: 6 new technology optical modules Prototype strings for GVD Prototype strings for GVD GVD cluster (3 strings), Technical Design Report GVD cluster (3 strings), Technical Design Report

NT200: 8 strings (192 optical modules ) Height x  = 70m x 40m, V inst =10 5 m 3 Effective area: 1 TeV~2000m² Eff. shower volume: 10 TeV~ 0.2 Mton Quasar photodetector (  =37cm) NT200+ = NT outer strings (36 optical modules) Height x  = 210m x 200m, V inst = 5  10 6 m 3 Eff. shower volume: 10 4 TeV ~ 10 Mton Status of NT200+ LAKE BAIKAL ~ 3.6 km to shore, 1070 m depth NT200+ is operating now in Lake Baikal (~10 months/yr. persistent data taking)

Gigaton Volume Detector (GVD) in Lake Baikal R&D status Objectives: - km3-scale 3D-array of photodetectors - flexible structure allowing an upgrade and/or a rearrangement of the main building blocks (clusters) - high sensitivity and resolution of neutrino energy, direction and flavor content Central Physics Goals: - Investigate Galactic and extragalactic neutrino “point sources” in energy range > 10 TeV - Diffuse neutrino flux – energy spectrum, local and global anisotropy, flavor content - Transient sources (GRB, …)

ClasterStr. section m GVD - Preliminary design Layout: ~2300 Optical Modules, 96 Strings, 12 Clusters String comprises 24 OMs, which are combined in 2 independent Sections Cluster contains 8 strings Instrumented volume: 0.4 – 0.6 km 3 Detection Performance Cascades: ( E>100 TeV): V eff ~0.3 – 0.8 km 3 δ(lgE) ~0.1, δθ med ~ 3 o -6 o Muons: ( E>10 TeV): S eff ~ 0.2 – 0.5 km 2 δθ med ~ 0.3 o -0.5 o

Cable communication to shore 1370 m maximum depth Distance to shore 4 … 5 km 12 clusters × 192 OM 12 cables ~ 6 km GVD cluster 12 Shore cables ~6 km 1350…1370 m Shore Center 12 GVD clusters NT200+

Optimisation of GVD configuration (preliminary) Parameters for optimization: Z – vertical distance between OM R – distance between string and cluster centre H – distance between cluster centres Muon effective area R=80 m R=100 m R=60 m The compromise between cascade detection volume and muon effective area: H=300 m R = 60 m Z = 15 m Trigger: coincidences of any neighbouring OM on string (thresholds 0.5&3p.e.) PMT: R7081HQE,10”, QE~0.35

GVD – R&D ( ) GVD - Key Elements and Systems: - Optical Module - FADC-readout system - Section Trigger Logics - Calibration - Data Transport - Cluster Trigger System, DAQ - Data Transport to Shore OM 12 OMs2 Sections8 Strings to Shore SectionStringCluster

Optical module XP1807(12”), R8055(13”) ‏, R7081HQE(10”) QE ~0.24 QE ~0.2 QE~0.35 HV unit: SHV12-2.0K,TracoPower OM controller Amplifier: K amp = 10 LED calibration system (2 LEDs) Functional scheme of the optical module electronics XP1807 R8055 R7081 HQE Relative sensitivities of large area PMs R8055/13” and XP1807/12”

Measuring channels BEG PMT 1 AmplifierFADC 1 90 m coax.cable OM PMT 12 AmplifierFADC m coax. cable … BEG (FADC Unit) -3 FADC-board: 4-channel, 12 bit, 200 MHz; -OM power controller; -VME controller: trigger logic, data readout from FADC, connection via local Ethernet

Section – basic detection unit Section: - 12 Optical Modules - BEG with 12 FADC channels and trigger unit - Service Module (SM): LEDs for OM calibration, OM power supply, acoustic positioning system. Basic trigger: coincidences of nearby OM (threch. ~0.5&3 p.e.) expected count rate < 100 Hz Communications: BEG  cluster centre: DSL-modem, expected dataflow < 1Mbit/s BEG  OMs: RS-485 Bus (slow control)

Cluster DAQ center Cluster of strings 8 Strings String consists of 2 sections (2×12 OM) Cluster DAQ Centre (4 modules) 1. PC-module with optical Ethernet communication to shore (data transmission and synchronization) 2. Trigger module with 8 FADC channels (time mark of string trigger) 3. Data communication module (8 DSL-modems for communication to strings, ~10 Mbit/s for 1 km ) 4. Power control system

In-situ tests of basic elements of GVD with prototypes strings ( ) Investigation and tests of new optical modules, DAQ system, cabling system, triggering approaches ( LED Laser Muons) NT200+ Prototype string 2009 Prototype string 2010 PMT: Photonis XP OM Hamamatsu R OM PMT: Hamamatsu R7081HQE 7 OM Hamamatsu R OM GVD prototype strings

R7081HQE R8055 Prototype string deployment: April 2010 PC BEG1 SM BEG2

Time resolution of measuring channels (in-situ tests with LED) LED flasher produces pairs of delayed pulses. Light pulses are transmitted to each optical module (channel) via individual optical fibers. Delay values are calculated from the FADC data. Measured delay dT between two LED pulses LED1 and LED 2 pulse amplitude Example of a two-pulse LED flasher event (channel #5) LED1 LED2  (dT) 1.6 ns

Time accuracy (in-situ test with Laser) LASER 110 m OM#7 OM#8 OM#9 OM#10 OM#11 OM#12 OM#1 OM#2 OM#3 OM#4 OM#5 OM#6 97 m r1r1 r2r2 Differences between dT measured with Laser and expected dT in dependence on distances between channels dr  T < 3 ns Test with LASER  T = dT EXPECTED = (r 2 -r 1 )  c water dT LASER - time difference between two channels measured for Laser pulses (averaged on all channel combinations with fixed (r 2 -r 1 ))

Distribution of time difference  T between muon pulses for two up-ward looking PMTs: experiment and expectation from atm. muons.  T between muon pulses detected with different channels are studied and compared with simulation of the string response to the atmospheric muon flux. Trigger: 3-fold OM coincidences Muon detection MC

Monitoring of Optical Module operation OM temperature PMT voltage OM monitoring parameters: - PMT high voltage; - PMT count rate; - Temperature; - OM low voltages: 12 V, 5 V, -5 V … OM3 OM5 Example of PMT voltage monitoring : Example of PMT count rate monitoring

Schedule: >2006 Activity towards the Gigaton Volume Detector Prototype Strings ( test of GVD key elements and systems) Technical Design Report Preparatory Phase, Prototype of Cluster (in-situ test) Fabrication (OMs, cables, connectors, electronics) Construction ( ) GVD