Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal

Slides:



Advertisements
Similar presentations
ANalysis Of VAriance can be used to test for the equality of three or more population means. H 0 :  1  =  2  =  3  = ... =  k H a : Not all population.
Advertisements

1 1 Slide © 2003 South-Western /Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western/Thomson Learning 
Econ 3790: Business and Economic Statistics
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Analysis of Variance (ANOVA) ANOVA can be used to test for the equality of three or more population means We want to use the sample results to test the.
1 Chapter 10 Comparisons Involving Means  1 =  2 ? ANOVA Estimation of the Difference between the Means of Two Populations: Independent Samples Hypothesis.
1 1 Slide Slides by JOHN LOUCKS St. Edward’s University.
Chapter 10 Comparisons Involving Means
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 12 Simple Linear Regression
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1/71 Statistics Inferences About Population Variances.
1 1 Slide © 2009, Econ-2030 Applied Statistics-Dr Tadesse Chapter 10: Comparisons Involving Means n Introduction to Analysis of Variance n Analysis of.
Basic concept of statistics Measures of central Measures of central tendency Measures of dispersion & variability.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Chapter 11 – Test for the Equality of k Population Means nRejection Rule where the value of F  is based on an F distribution with k - 1 numerator d.f.
1 1 Slide © 2005 Thomson/South-Western AK/ECON 3480 M & N WINTER 2006 n Power Point Presentation n Professor Ying Kong School of Analytic Studies and Information.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 3 月 30 日 第八週:變異數分析與實驗設計.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 13, Part A Analysis of Variance and Experimental Design n Introduction to Analysis of Variance n Analysis.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 13 Experimental Design and Analysis of Variance nIntroduction to Experimental Design.
1 1 Slide Analysis of Variance Chapter 13 BA 303.
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 11 Inferences About Population Variances n Inference about a Population Variance n.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Econ 3790: Business and Economics Statistics
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide Simple Linear Regression Coefficient of Determination Chapter 14 BA 303 – Spring 2011.
Basic concept Measures of central tendency Measures of central tendency Measures of dispersion & variability.
1 Chapter 13 Analysis of Variance. 2 Chapter Outline  An introduction to experimental design and analysis of variance  Analysis of Variance and the.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Copyright © Cengage Learning. All rights reserved. 12 Analysis of Variance.
Pendugaan Parameter Varians dan Rasio Varians Pertemuan 18 Matakuliah: I0134/Metode Statistika Tahun: 2007.
Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal
© 2006 by Thomson Learning, a division of Thomson Asia Pte Ltd.. 1 Slide Slide Slides Prepared by Juei-Chao Chen Fu Jen Catholic University Slides Prepared.
Chapter 12 Simple Linear Regression n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
ANalysis Of VAriance can be used to test for the equality of three or more population means. H 0 :  1  =  2  =  3  = ... =  k H a : Not all population.
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
Chapter 10 Section 5 Chi-squared Test for a Variance or Standard Deviation.
1/54 Statistics Analysis of Variance. 2/54 Statistics in practice Introduction to Analysis of Variance Analysis of Variance: Testing for the Equality.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
 List the characteristics of the F distribution.  Conduct a test of hypothesis to determine whether the variances of two populations are equal.  Discuss.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
Chapter 13 Analysis of Variance (ANOVA). ANOVA can be used to test for differences between three or more means. The hypotheses for an ANOVA are always:
統計學 Spring 2004 授課教師:統計系余清祥 日期:2004年3月16日 第五週:比較變異數.
Chapter 11 Created by Bethany Stubbe and Stephan Kogitz.
Chapter 11 – Test for the Equality of k
Pertemuan 17 Analisis Varians Klasifikasi Satu Arah
Sampling distribution of
Statistics Analysis of Variance.
John Loucks St. Edward’s University . SLIDES . BY.
Statistics for Business and Economics (13e)
Econ 3790: Business and Economic Statistics
Chapter 11 Inferences About Population Variances
Chapter 10 – Part II Analysis of Variance
Presentation transcript:

Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal

Chapter 11 Inferences About Population Variances Inference about a Population Variance Chi-Square Distribution Interval Estimation of  2 Hypothesis Testing

Chi-Square Distribution We will use the notation to denote the value for the chi-square distribution that provides an area of  to the right of the stated value. For example, Chi-squared value with 5 degrees of freedom (df) at  =0.05 is

95% of the possible  2 values 95% of the possible  2 values 22 2 Interval Estimation of  2 = 11.07

Interval Estimate of a Population Variance Interval Estimation of  2 where the    values are based on a chi-square distribution with n - 1 degrees of freedom and 1 -  is the confidence coefficient.

Interval Estimation of  Interval Estimate of a Population Standard Deviation Taking the square root of the upper and lower Taking the square root of the upper and lower limits of the variance interval provides the confidence interval for the population standard deviation.

Example: Buyer’s Digest (A): Buyer’s Digest rates thermostats manufactured for home temperature control. In a recent test, 10 thermostats manufactured by ThermoRite were selected and placed in a test room that was maintained at a temperature of 68 o F. The temperature readings of the ten thermostats are shown on the next slide. Interval Estimation of  2

We will use the 10 readings below to We will use the 10 readings below to develop a 95% confidence interval estimate of the population variance. Example: Buyer’s Digest (A) Temperature Thermostat

Interval Estimation of  2 Selected Values from the Chi-Square Distribution Table Our value For n - 1 = = 9 d.f. and  =.05

Sample variance s 2 provides a point estimate of  2. Interval Estimation of  2.33 <  2 < 2.33 A 95% confidence interval for the population variance is given by:

Hypothesis Testing about a Population Variance Left-Tailed Test where is the hypothesized value for the population variance Test Statistic Test Statistic Hypotheses Hypotheses

n Left-Tailed Test (continued) Hypothesis Testing About a Population Variance Reject H 0 if p -value <  p -Value approach: Critical value approach: Rejection Rule Rejection Rule Reject H 0 if where is based on a chi-square distribution with n - 1 d.f.

Right-Tailed Test Hypothesis Testing About a Population Variance where is the hypothesized value for the population variance Test Statistic Test Statistic Hypotheses Hypotheses

n Right-Tailed Test (continued) Hypothesis Testing About a Population Variance Reject H 0 if Reject H 0 if p -value <  where is based on a chi-square distribution with n - 1 d.f. p -Value approach: Critical value approach: Rejection Rule Rejection Rule

Two-Tailed Test Hypothesis Testing About a Population Variance where is the hypothesized value for the population variance Test Statistic Test Statistic Hypotheses Hypotheses

n Two-Tailed Test (continued) Hypothesis Testing About a Population Variance Reject H 0 if p -value <  p -Value approach: Critical value approach: Rejection Rule Rejection Rule Reject H 0 if where are based on a chi-square distribution with n - 1 d.f.

Example: Buyer’s Digest (B): Recall that Buyer’s Digest is rating ThermoRite thermostats. Buyer’s Digest gives an “acceptable” rating to a thermostat with a temperature variance of 0.5 or less. Hypothesis Testing About a Population Variance We will conduct a hypothesis test (with  =.10) to determine whether the ThermoRite thermostat’s temperature variance is “acceptable”.

Hypothesis Testing About a Population Variance Using the 10 readings, we will conduct a hypothesis test (with  =.10) to determine whether the ThermoRite thermostat’s temperature variance is Using the 10 readings, we will conduct a hypothesis test (with  =.10) to determine whether the ThermoRite thermostat’s temperature variance is“acceptable”. Example: Buyer’s Digest (B) Temperature Thermostat

Hypotheses Hypothesis Testing About a Population Variance Reject H 0 if  2 > Rejection Rule

Selected Values from the Chi-Square Distribution Table For n - 1 = = 9 d.f. and  =.10 Hypothesis Testing About a Population Variance Our value

22 2 Area in Upper Tail =.10 Area in Upper Tail =.10 Hypothesis Testing About a Population Variance Rejection Region Reject H 0

Test Statistic Hypothesis Testing About a Population Variance Because  2 = 12.6 is less than , we cannot reject H 0. The sample variance s 2 =.7 is insufficient evidence to conclude that the temperature variance for ThermoRite thermostats is unacceptable. Conclusion The sample variance s 2 = 0.7

Chapter 13, Part A: Analysis of Variance and Experimental Design Introduction to Analysis of Variance Analysis of Variance: Testing for the Equality of k Population Means

Introduction to Analysis of Variance Analysis of Variance (ANOVA) can be used to test Analysis of Variance (ANOVA) can be used to test for the equality of three or more population means. for the equality of three or more population means. Analysis of Variance (ANOVA) can be used to test Analysis of Variance (ANOVA) can be used to test for the equality of three or more population means. for the equality of three or more population means. We want to use the sample results to test the We want to use the sample results to test the following hypotheses: following hypotheses: We want to use the sample results to test the We want to use the sample results to test the following hypotheses: following hypotheses: H 0 :  1  =  2  =  3  = ... =  k H a : Not all population means are equal

Introduction to Analysis of Variance H 0 :  1  =  2  =  3  = ... =  k H a : Not all population means are equal If H 0 is rejected, we cannot conclude that all If H 0 is rejected, we cannot conclude that all population means are different. population means are different. If H 0 is rejected, we cannot conclude that all If H 0 is rejected, we cannot conclude that all population means are different. population means are different. Rejecting H 0 means that at least two population Rejecting H 0 means that at least two population means have different values. means have different values. Rejecting H 0 means that at least two population Rejecting H 0 means that at least two population means have different values. means have different values.

For each population, the response variable is For each population, the response variable is normally distributed. normally distributed. For each population, the response variable is For each population, the response variable is normally distributed. normally distributed. Assumptions for Analysis of Variance The variance of the response variable, denoted  2, The variance of the response variable, denoted  2, is the same for all of the populations. is the same for all of the populations. The variance of the response variable, denoted  2, The variance of the response variable, denoted  2, is the same for all of the populations. is the same for all of the populations. The observations must be independent. The observations must be independent.

Test for the Equality of k Population Means F = MSTR/MSE H 0 :  1  =  2  =  3  = ... =  k  H a : Not all population means are equal n Hypotheses n Test Statistic

Between-Treatments Estimate of Population Variance A between-treatment estimate of  2 is called the mean square treatment and is denoted MSTR. Denominator represents the degrees of freedom the degrees of freedom Numerator is the sum of squares sum of squares due to treatments due to treatments and is denoted SSTR

The estimate of  2 based on the variation of the sample observations within each sample is called the mean square error and is denoted by MSE. Within-Samples Estimate of Population Variance Denominator represents the degrees of freedom the degrees of freedom associated with SSE associated with SSE Numerator is the sum of squares sum of squares due to error and is denoted SSE

Test for the Equality of k Population Means n Rejection Rule where the value of F  is based on an F distribution with k - 1 numerator d.f. and n T - k denominator d.f. Reject H 0 if F > F  n k: # of subpopulations you are comparing. n n T : Total number of observations.

Selected Values from the F Distribution Table Hypothesis Testing About the Variances of Two Populations

Comparing the Variance Estimates: The F Test If the null hypothesis is true and the ANOVA If the null hypothesis is true and the ANOVA assumptions are valid, the sampling distribution of assumptions are valid, the sampling distribution of MSTR/MSE is an F distribution with MSTR d.f. MSTR/MSE is an F distribution with MSTR d.f. equal to k - 1 and MSE d.f. equal to n T - k. equal to k - 1 and MSE d.f. equal to n T - k. If the means of the k populations are not equal, the If the means of the k populations are not equal, the value of MSTR/MSE will be inflated because MSTR value of MSTR/MSE will be inflated because MSTR overestimates  2. overestimates  2. Hence, we will reject H 0 if the resulting value of Hence, we will reject H 0 if the resulting value of MSTR/MSE appears to be too large to have been MSTR/MSE appears to be too large to have been selected at random from the appropriate F selected at random from the appropriate F distribution. distribution.

ANOVA Table SST is partitioned into SSTR and SSE. SST’s degrees of freedom (d.f.) are partitioned into SSTR’s d.f. and SSE’s d.f. Treatment Error Total SSTR SSE SST k– 1 n T n T – k nT nT nT nT - 1 MSTR MSE Source of Variation Sum of Squares Degrees of Freedom MeanSquares MSTR/MSE F

ANOVA Table SST divided by its degrees of freedom n T – 1 is the SST divided by its degrees of freedom n T – 1 is the overall sample variance that would be obtained if we overall sample variance that would be obtained if we treated the entire set of observations as one data set. treated the entire set of observations as one data set. SST divided by its degrees of freedom n T – 1 is the SST divided by its degrees of freedom n T – 1 is the overall sample variance that would be obtained if we overall sample variance that would be obtained if we treated the entire set of observations as one data set. treated the entire set of observations as one data set. With the entire data set as one sample, the formula for computing the total sum of squares, SST, is: for computing the total sum of squares, SST, is: With the entire data set as one sample, the formula for computing the total sum of squares, SST, is: for computing the total sum of squares, SST, is:

ANOVA Table ANOVA can be viewed as the process of partitioning ANOVA can be viewed as the process of partitioning the total sum of squares and the degrees of freedom the total sum of squares and the degrees of freedom into their corresponding sources: treatments and error. into their corresponding sources: treatments and error. ANOVA can be viewed as the process of partitioning ANOVA can be viewed as the process of partitioning the total sum of squares and the degrees of freedom the total sum of squares and the degrees of freedom into their corresponding sources: treatments and error. into their corresponding sources: treatments and error. Dividing the sum of squares by the appropriate Dividing the sum of squares by the appropriate degrees of freedom provides the variance estimates degrees of freedom provides the variance estimates and the F value used to test the hypothesis of equal and the F value used to test the hypothesis of equal population means. population means. Dividing the sum of squares by the appropriate Dividing the sum of squares by the appropriate degrees of freedom provides the variance estimates degrees of freedom provides the variance estimates and the F value used to test the hypothesis of equal and the F value used to test the hypothesis of equal population means. population means.

Example: Reed Manufacturing Test for the Equality of k Population Means Janet Reed would like to know if Janet Reed would like to know if there is any significant difference in the mean number of hours worked per week for the department managers at her three manufacturing plants (in Buffalo, Pittsburgh, and Detroit).

Example: Reed Manufacturing Test for the Equality of k Population Means A simple random sample of five A simple random sample of five managers from each of the three plants was taken and the number of hours worked by each manager for the previous week is shown on the next slide. Conduct an F test using  =.05. Conduct an F test using  =.05.

Plant 1 Buffalo Plant 2 Pittsburgh Plant 3 Detroit Observation Sample Mean Sample Variance Test for the Equality of k Population Means

H 0 :  1  =  2  =  3  H a : Not all the means are equal where:  1 = mean number of hours worked per week by the managers at Plant 1 week by the managers at Plant 1  2 = mean number of hours worked per  2 = mean number of hours worked per week by the managers at Plant 2 week by the managers at Plant 2  3 = mean number of hours worked per week by the managers at Plant 3 week by the managers at Plant 3 1. Develop the hypotheses. p -Value and Critical Value Approaches p -Value and Critical Value Approaches

Treatment Error Total Source of Variation Sum of Squares Degrees of Freedom MeanSquares 9.5 F Test for the Equality of k Population Means Compute the test statistic using ANOVA Table Compute the test statistic using ANOVA Table

Test for the Equality of k Population Means 5. Determine whether to reject H 0. We have sufficient evidence to conclude that the mean number of hours worked per week by department managers is not the same at all 3 plant. The F > F , so we reject H 0. With 2 numerator d.f. and 12 denominator d.f., F  = p –Value Approach p –Value Approach 4. Compute the critical value.