Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.

Slides:



Advertisements
Similar presentations
Related Rates Finding the rates of change of two or more related variables that are changing with respect to time.
Advertisements

4.6 Related Rates Any equation involving two or more variables that are differentiable functions of time t can be used to find an equation that relates.
2.6 Related Rates.
2019 Related Rates AB Calculus.
Section 4.6 – Related Rates PICK UP HANDOUT FROM YOUR FOLDER 5.5.
Section 2.6 Related Rates.
Section 2.6: Related Rates
1. Read the problem, pull out essential information and identify a formula to be used. 2. Sketch a diagram if possible. 3. Write down any known rate of.
Objectives: 1.Be able to find the derivative of an equation with respect to various variables. 2.Be able to solve various rates of change applications.
Teresita S. Arlante Naga City Science High School.
A conical tank (with vertex down) is 10 feet across the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute,
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
Sec 2.6 Related Rates In related rates problems, one tries to find the rate at which some quantity is changing by relating it to other quantities whose.
DERIVATIVES Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity.
D1 - Related Rates IB Math HL, MCB4U - Santowski.
Section 2.8 Related Rates. RELATED RATE PROBLEMS Related rate problems deal with quantities that are changing over time and that are related to each other.
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
Section 2.6 Related Rates Read Guidelines For Solving Related Rates Problems on p. 150.
Related rates.
Miss Battaglia AP Calculus Related rate problems involve finding the ________ at which some variable changes. rate.
Related Rates Test Review
Aim: How do we find related rates when we have more than two variables? Do Now: Find the points on the curve x2 + y2 = 2x +2y where.
R ELATED R ATES. The Hoover Dam Oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant.
Related Rates Section 4.6a.
3.9 Related Rates 1. Example Assume that oil spilled from a ruptured tanker in a circular pattern whose radius increases at a constant rate of 2 ft/s.
Lesson 3-10a Related Rates. Objectives Use knowledge of derivatives to solve related rate problems.
RELATED RATES Section 2.6.
Related Rates 5.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
Warm-Up If x 2 + y 2 = 25, what is the value of d 2 y at the point (4,3)? dx 2 a) -25/27 c) 7/27 e) 25/27 b) -7/27 d) 3/4.
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
6.5: Related Rates Objective: To use implicit differentiation to relate the rates in which 2 things are changing, both with respect to time.
Copyright © Cengage Learning. All rights reserved. 12 Further Applications of the Derivative.
Miss Battaglia AP Calculus Related rate problems involve finding the ________ at which some variable changes. rate.
Lesson 3-10b Related Rates. Objectives Use knowledge of derivatives to solve related rate problems.
Calculus and Analytical Geometry Lecture # 9 MTH 104.
Differentiation: Related Rates – Day 1
1 §3.4 Related Rates. The student will learn about related rates.
Related Rates Section 4.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does.
Warm Up Page 251 Quick Review 1-6 Reference page for Surface Area & Volume formulas.
RELATED RATES DERIVATIVES WITH RESPECT TO TIME. How do you take the derivative with respect to time when “time” is not a variable in the equation? Consider.
Bonaventura Francesco Cavalieri 1598 – 1647 Bonaventura Francesco Cavalieri 1598 – 1647 Bonaventura Cavalieri was an Italian mathematician who developed.
4.1 Related Rates Greg Kelly, Hanford High School, Richland, Washington.
Drill: find the derivative of the following 2xy + y 2 = x + y 2xy’ +2y + 2yy’ = 1 + y’ 2xy’ + 2yy’ – y’ = 1 – 2y y’(2x + 2y – 1) = 1 – 2y y’ = (1-2y)/(2x.
Implicit Differentiation & Related Rates Review. Given: y = xtany, determine dy/dx.
4.6 RELATED RATES. STRATEGIES FOR SOLVING RELATED RATES PROBLEMS 1.READ AND UNDERSTAND THE PROBLEM. 2.DRAW AND LABEL A PICTURE. DISTINGUISH BETWEEN CONSTANT.
Calculus - Santowski 3/6/2016Calculus - Santowski1.
Related Rates ES: Explicitly assessing information and drawing conclusions.
Section 4.6 Related Rates. Consider the following problem: –A spherical balloon of radius r centimeters has a volume given by Find dV/dr when r = 1 and.
Related Rates 3.6.
3.9 Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity. DIFFERENTIATION.
Examples of Questions thus far…. Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
Section 2.8 Related Rates. RELATED RATE PROBLEMS Related rate problems deal with quantities that are changing over time and that are related to each other.
Related Rates. We have already seen how the Chain Rule can be used to differentiate a function implicitly. Another important use of the Chain Rule is.
A plane is flying at a constant rate of 500 mph at a constant altitude of 1 mile toward a person. a. How fast is the angle of elevation changing when the.
SPECIALIST MATHS Calculus Week 4 Related Rates. Related rate give relationship between two or more variables whose value are changing with time. An example.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Warm up 1. Calculate the area of a circle with diameter 24 ft. 2. If a right triangle has sides 6 and 9, how long is the hypotenuse? 3. Take the derivative.
Related Rates with Area and Volume
A plane flying horizontally at an altitude of 3 mi and a speed of 530 mi/h passes directly over a radar station. Find the rate at which the distance from.
Section 2-6 Related Rates
Related Rates AP Calculus AB.
Section 2.6 Calculus AP/Dual, Revised ©2017
4.6 – Related Rates “Trees not trimmed don't make good timber; children not educated don't make useful people.” Unknown Warm.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Related Rates Chapter 5.5.
Section 3.5 – Related Rates
Related Rates and Applications
Applications of Differentiation
Presentation transcript:

Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.

Related Rates When looking at water draining from a cone, we notice that the radius and height of the water changes as the volume changes. If we are interested in the rate of change of the volume with respect to time, we need to take the derivative of the volume function.

Related Rates This is called a related rates problem because the goal is to find an unknown rate of change by relating it to other variables whose values and whose rates of change at time t are known or can be found.

Example 1 Suppose that x and y are differentiable functions of t and are related by the equation . Find at time t = 1 if x = 2 and at time t = 1.

Example 1 Suppose that x and y are differentiable functions of t and are related by the equation . Find at time t = 1 if x = 2 and at time t = 1.

Example 2 Assume that oil spilled from a ruptured tanker spreads in a circular pattern whose radius increases at a constant rate of 2ft/s. How fast is the area of the spill increasing when the radius of the spill is 60ft?

Example 2 Assume that oil spilled from a ruptured tanker spreads in a circular pattern whose radius increases at a constant rate of 2ft/s. How fast is the area of the spill increasing when the radius of the spill is 60ft? We are looking for dA/dt. We know dr/dt = 2 ft/s. We know that r = 60 ft.

Example 2 Assume that oil spilled from a ruptured tanker spreads in a circular pattern whose radius increases at a constant rate of 2ft/s. How fast is the area of the spill increasing when the radius of the spill is 60ft? We are looking for dA/dt. We know dr/dt = 2 ft/s. We know that r = 60 ft.

Example 2 Assume that oil spilled from a ruptured tanker spreads in a circular pattern whose radius increases at a constant rate of 2ft/s. How fast is the area of the spill increasing when the radius of the spill is 60ft? We are looking for dA/dt. We know dr/dt = 2 ft/s. We know that r = 60 ft.

Example 3 A baseball diamond is a square whose sides are 90 ft long. Suppose that a player running from second base to third base has a speed of 30 ft/s at the instant when s/he is 20 ft from third base. At what rate is the player’s distance from home plate changing at that time?

Example 3 A baseball diamond is a square whose sides are 90 ft long. Suppose that a player running from second base to third base has a speed of 30 ft/s at the instant when s/he is 20 ft from third base. At what rate is the player’s distance from home plate changing at that time?

Example 3 t = number of seconds since the player left second base x = distance in feet from the player to third base y = distance in feet from the player to home plate

Example 3 We need to take the derivative to find the answer.

Example 3 We need to take the derivative to find the answer. We need to solve for y at the instant that x = 20

Example 3 We need to take the derivative to find the answer. We need to solve for y at the instant that x = 20

Example 4 A camera is mounted at a point 3000 ft from the base of a rocket launching pad. If the rocket is rising vertically at 880 ft/s when it is 4000 ft above the launching pad, how fast must the camera elevation angle change at that instant to keep the camera aimed at the rocket?

Example 4 A camera is mounted at a point 3000 ft from the base of a rocket launching pad. If the rocket is rising vertically at 880 ft/s when it is 4000 ft above the launching pad, how fast must the camera elevation angle change at that instant to keep the camera aimed at the rocket? t = time in seconds = angle of elevation h = height of rocket

Example 4 A camera is mounted at a point 3000 ft from the base of a rocket launching pad. If the rocket is rising vertically at 880 ft/s when it is 4000 ft above the launching pad, how fast must the camera elevation angle change at that instant to keep the camera aimed at the rocket? t = time in seconds = angle of elevation h = height of rocket

Example 4 We need to take the derivative to find the answer.

Example 4 We need to find the when h = 4000.

Example 5 Suppose that liquid is to be cleared of sediment by allowing it to drain through a conical filter that is 16 cm high and has a radius of 4 cm at the top. Suppose also that the liquid is forced out of the cone at a constant rate of . At what rate is the depth of the liquid changing at the instant when the liquid in the cone is 8 cm deep?

Example 5 t = time elapsed V = volume of liquid h = depth of liquid r = radius of liquid

Example 5 The problem here is that we don’t know anything about r or dr/dt. We need to make a substitution to get rid of the r and put everything in terms of h.

Example 5 The problem here is that we don’t know anything about r or dr/dt. We need to make a substitution to get rid of the r and put everything in terms of h. We will use our knowledge of similar triangles to solve for r in terms of h.

Example 5 We now need to find the derivative to solve for dh/dt.

Homework Section 3.4 Page 208-209 1-9 odd 13-21 odd 25,27