Lecture 4 Assembly Language Topics Finish IEEE Floating Point multiplication, addition Lab 1 comments Assembly Language Intro January 25, 2011 CSCE 212.

Slides:



Advertisements
Similar presentations
Machine Programming I: Basics
Advertisements

Machine-Level Programming I: Basics
Machine Programming – Procedures and IA32 Stack CENG334: Introduction to Operating Systems Instructor: Erol Sahin Acknowledgement: Most of the slides are.
University of Washington Instruction Set Architectures ISAs Brief history of processors and architectures C, assembly, machine code Assembly basics: registers,
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-243: Introduction to Computer Systems 4 th Lecture, Sep. 2, 2010 Instructors: Randy Bryant.
Instruction Set Architectures
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Tue. May 27, 2015 Instructors: Nathaniel.
Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations CS.
Machine-Level Programming I: Introduction January 29, 2002 Topics Assembly Programmer’s Execution Model Accessing Information –Registers –Memory Arithmetic.
Machine-Level Programming I: Introduction Sept. 10, 2002 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Machine-Level Programming I: Introduction
– 1 – ISAs and Microarchitectures Instruction Set Architecture The interface between hardware and software “Language” + programmer visible state + I/O.
– 1 – , F’02 ICS05 Instructor: Peter A. Dinda TA: Bin Lin Recitation 4.
Machine-Level Programming I: Introduction Jan 27, 2004 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Machine-Level Programming I: Introduction Apr. 10, 2006 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Machine-Level Programming I: Introduction Apr. 14, 2008 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Machine-Level Programming I: Introduction Sept. 14, 2004 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
C Prog. To Object Code text text binary binary Code in files p1.c p2.c
Machine-Level Programming I: Introduction Sept. 10, 2007 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Stack Activation Records Topics IA32 stack discipline Register saving conventions Creating pointers to local variables February 6, 2003 CSCE 212H Computer.
Machine-Level Programming I: Introduction Sept. 10, 2002 Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Sep. 11, 2012 Instructors: Dave O’Hallaron,
1 Machine-Level Programming I: Basics Computer Systems Organization Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O’Hallaron.
Carnegie Mellon 1 Machine-Level Programming I: Basics Lecture, Feb. 14, 2013 These slides are from website which accompanies the.
Carnegie Mellon 1 Machine-Level Programming I: Basics /18-213: Introduction to Computer Systems 5 th Lecture, Jan 28, 2014 Instructors: Seth Copen.
Lee CSCE 312 TAMU 1 Machine-Level Programming I: Basics Instructor: Dr. Hyunyoung Lee Based on slides provided by: Randy Bryant and Dave O’Hallaron.
II:1 X86 Assembly - Data. II:2 Admin Quiz?  What happened?  Make-up options? Several missing from lab Attendance at lab is required Passing grade without.
Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Machine-Level Programming I: Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations X86.1.ppt CS 105.
Lecture 5 Assembly Language
Machine-Level Programming 1 Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations CS.
University of Washington Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
University of Washington Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Lec 4Systems Architecture1 Systems Architecture Lecture 4: Compilers, Assemblers, Linkers & Loaders Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan.
Machine-Level Programming I: Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations CS 105 “Tour of.
University of Washington Basics of Machine Programming The Hardware/Software Interface CSE351 Winter 2013.
Machine-Level Programming I: Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations CS 105 “Tour of.
Machine-Level Programming 1 Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
University of Washington x86 Programming I The Hardware/Software Interface CSE351 Winter 2013.
Carnegie Mellon 1 Machine-Level Programming I: Basics Lecture, Feb. 21, 2013 These slides are from website which accompanies the.
University of Washington Today Lab1, how is it going?  Now due on Sunday HW 1 out! (Integer, FP, …) Luis out of town Monday (no class)  Spend the time.
IA32 Stack –Region of memory managed with stack discipline –Grows toward lower addresses –Register %esp indicates lowest stack address address of top element.
Machine-Level Programming I: Introduction Jan. 30, 2001 Topics Assembly Programmer’s Execution Model Accessing Information –Registers –Memory Arithmetic.
Machine-Level Programming I: IA32 Assembly Language Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
Spring 2016Machine Code & C Roadmap 1 car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Car c = new Car(); c.setMiles(100);
X86 Machine-Level Programming I: Introduction Topics Assembly Programmer’s Execution Model Accessing Information Registers Memory Arithmetic operations.
1 Binghamton University Machine-Level Programming I: Basics CS220: Computer Systems II.
A job ad at a game programming company
X86 Assembly - Data.
Instruction Set Architecture
Machine-Level Programming I:
Machine-Level Programming I:
IA32 Processors Evolutionary Design
Machine-Level Programming 1 Introduction
Machine-Level Programming 4 Procedures
C Prog. To Object Code text text binary binary Code in files p1.c p2.c
Machine-Level Programming III: Procedures Sept 18, 2001
Machine-Level Programming I: Introduction Feb. 1, 2000
Machine-Level Programming I: Introduction
X86 Assembly - Data.
Machine-Level Programming: Introduction
Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan
Machine-Level Programming I: Basics
Machine-Level Programming I:
Machine-Level Programming I:
Machine-Level Programming I: Introduction Sept. 10, 2002
Presentation transcript:

Lecture 4 Assembly Language Topics Finish IEEE Floating Point multiplication, addition Lab 1 comments Assembly Language Intro January 25, 2011 CSCE 212 Computer Architecture

– 2 – CSCE 212H Spring 2011 Overview Last Time Lecture 03 – slides 1-14, 16? Denormalized floats Special floats, Infinity, NaN Tiny Floats Error in show bytes code!!!New Finish denormals from last time Rounding, multiplication, addition Lab 1 comments Libraries Masks Unions Assembly Language

– 3 – CSCE 212H Spring 2011 Rebuttals on 211 Student Evaluations ....

– 4 – CSCE 212H Spring 2011 Last Pop Quiz – Normal floats Value Float F = 212; =Significand M = 1. 2 frac= 2Exponent E = Bias = Exp = = 2 Floating Point Representation: Hex: Binary: exponent: 212:

– 5 – CSCE 212H Spring 2011 Jan 25 Pop Quiz - denormals 1.What is the representation of the largest denormalized IEEE float (in binary)? 2.In hex? 3.What is its value as an expression, i.e., (-1) sign m * 2 exp 4.How many floats are there between 1.0 and 2.0? 5.What is a/the representation of minus infinity? 6.In C are there more ints or doubles? 7.In Math are there more rationals than integers ? 8.Extra credit for pop quiz 1: what is aleph-0?

– 6 – CSCE 212H Spring 2011 Lab01  msb.c – extract and print most significant byte Unions Pointers Masks and such  sin.c – using math library gcc sin.c -lm

– 7 – CSCE 212H Spring 2011 label_show_bytes void label_show_bytes(char *label, pointer start, int len) { int i; int i; printf("%s\n", label); printf("%s\n", label); for (i = 0; i < len; i++) for (i = 0; i < len; i++) printf("0x%p\t0x%.2x\n", printf("0x%p\t0x%.2x\n", start+i, start[i]); start+i, start[i]); printf("\n"); printf("\n");}

– 8 – CSCE 212H Spring 2011 Unions and such float f, pi; float f, pi; union { union { float fl; float fl; unsigned int ui; unsigned int ui; } un; } un; pi = ; /* what precision!*/ pi = ; /* what precision!*/ un.fl = -1*pi; un.fl = -1*pi; printf("float %f assigned to unsigned %ud\n", pi, un.ui); printf("float %f assigned to unsigned %ud\n", pi, un.ui); label_show_bytes("un.fl", (pointer)&un.fl, 4); label_show_bytes("un.fl", (pointer)&un.fl, 4); label_show_bytes("un.ui", (pointer)&un.ui, 4); label_show_bytes("un.ui", (pointer)&un.ui, 4);

– 9 – CSCE 212H Spring 2011 Pointers  Declarations  Dereferences  Address-of operator  Explicit Casting

– 10 – CSCE 212H Spring 2011 Masks and such

– 11 – CSCE 212H Spring 2011 Math library  /usr/lib  ar t /usr/lib/libm.a  gcc sin.c -lm

– 12 – CSCE 212H Spring 2011 FP Multiplication Operands (– 1) s1 M1 2 E1 * (– 1) s2 M2 2 E2 Exact Result (– 1) s M 2 E Sign s: s1 ^ s2 Significand M: M1 * M2 Exponent E: E1 + E2Fixing If M ≥ 2, shift M right, increment E If E out of range, overflow Round M to fit frac precisionImplementation Biggest chore is multiplying significands

– 13 – CSCE 212H Spring 2011 FP Addition Operands (– 1) s1 M1 2 E1 (– 1) s2 M2 2 E2 Assume E1 > E2 Exact Result (– 1) s M 2 E Sign s, significand M: Result of signed align & add Exponent E: E1Fixing If M ≥ 2, shift M right, increment E if M < 1, shift M left k positions, decrement E by k Overflow if E out of range Round M to fit frac precision (– 1) s1 M1 (– 1) s2 M2 E1–E2 + (– 1) s M

– 14 – CSCE 212H Spring 2011 Floating Point in C C Guarantees Two Levels float single precision double double precisionConversions Casting between int, float, and double changes numeric values Double or float to int Truncates fractional part Like rounding toward zero Not defined when out of range »Generally saturates to TMin or TMax int to double Exact conversion, as long as int has ≤ 53 bit word size int to float Will round according to rounding mode

– 15 – CSCE 212H Spring 2011 IEEE 754 Rounding Algorithms 1.Round to nearest, ties to even – rounds to the nearest value; if the number falls midway it is rounded to the nearest value with an even (zero) least significant bit, which occurs 50% of the time; this is the default algorithm for binary floating-point and the recommended default for decimal 2.Round to nearest, ties away from zero – rounds to the nearest value; if the number falls midway it is rounded to the nearest value above (for positive numbers) or below (for negative numbers) 3.Round toward 0 – directed rounding towards zero (also called truncation) 4.Round toward – directed rounding towards positive infinity 5.Round toward – directed rounding towards negative infinity.

– 16 – CSCE 212H Spring 2011 Ariane 5 Exploded 37 seconds after liftoff Cargo worth $500 millionWhy Computed horizontal velocity as floating point number Converted to 16-bit integer Worked OK for Ariane 4 Overflowed for Ariane 5 Used same software

– 17 – CSCE 212H Spring 2011 IA32 Processors Totally Dominate Computer Market Evolutionary Design Starting in 1978 with 8086 Added more features as time goes on Still support old features, although obsolete Complex Instruction Set Computer (CISC) Many different instructions with many different formats But, only small subset encountered with Linux programs Hard to match performance of Reduced Instruction Set Computers (RISC) But, Intel has done just that!

– 18 – CSCE 212H Spring 2011 X86 Evolution: Programmer’s View NameDateTransistors K 16-bit processor. Basis for IBM PC & DOS Limited to 1MB address space. DOS only gives you 640K K Added elaborate, but not very useful, addressing scheme Basis for IBM PC-AT and Windows K Extended to 32 bits. Added “flat addressing” Capable of running Unix Linux/gcc uses no instructions introduced in later models

– 19 – CSCE 212H Spring 2011 X86 Evolution: Programmer’s View NameDateTransistors M Pentium M Pentium/MMX M Added special collection of instructions for operating on 64- bit vectors of 1, 2, or 4 byte integer data PentiumPro M Added conditional move instructions Big change in underlying microarchitecture

– 20 – CSCE 212H Spring 2011 X86 Evolution: Programmer’s View NameDateTransistors Pentium III M Added “streaming SIMD” instructions for operating on 128-bit vectors of 1, 2, or 4 byte integer or floating point data Our fish machines Pentium M Added 8-byte formats and 144 new instructions for streaming SIMD mode

– 21 – CSCE 212H Spring 2011 X86 Evolution: Clones Advanced Micro Devices (AMD) Historically AMD has followed just behind Intel A little bit slower, a lot cheaper Recently Recruited top circuit designers from Digital Equipment Corp. Exploited fact that Intel distracted by IA64 Now are close competitors to Intel Developing own extension to 64 bits

– 22 – CSCE 212H Spring 2011 X86 Evolution: Clones Transmeta Recent start-up Employer of Linus Torvalds Radically different approach to implementation Translates x86 code into “Very Long Instruction Word” (VLIW) code High degree of parallelism Shooting for low-power market

– 23 – CSCE 212H Spring 2011 New Species: IA64 NameDateTransistors Itanium200110M Extends to IA64, a 64-bit architecture Radically new instruction set designed for high performance Will be able to run existing IA32 programs On-board “x86 engine” Joint project with Hewlett-Packard Itanium M Big performance boost

– 24 – CSCE 212H Spring 2011 Assembly Programmer’s View Programmer-Visible State EIPProgram Counter Address of next instruction Register File Heavily used program data Condition Codes Store status information about most recent arithmetic operation Used for conditional branching EIPEIP Registers CPU Memory Object Code Program Data OS Data Addresses Data Instructions Stack Condition Codes Memory Byte addressable array Code, user data, (some) OS data Includes stack used to support procedures

– 25 – CSCE 212H Spring 2011 text binary Compiler ( gcc -S ) Assembler ( gcc or as ) Linker ( gcc or ld ) C program ( p1.c p2.c ) Asm program ( p1.s p2.s ) Object program ( p1.o p2.o ) Executable program ( p ) Static libraries (.a ) Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations ( -O ) Put resulting binary in file p

– 26 – CSCE 212H Spring 2011 Compiling Into Assembly C Code int sum(int x, int y) { int t = x+y; return t; } Generated Assembly _sum: pushl %ebp movl %esp,%ebp movl 12(%ebp),%eax addl 8(%ebp),%eax movl %ebp,%esp popl %ebp ret Obtain with command gcc -O -S code.c Produces file code.s

– 27 – CSCE 212H Spring 2011 Assembly Characteristics Minimal Data Types “Integer” data of 1, 2, or 4 bytes Data values Addresses (untyped pointers) Floating point data of 4, 8, or 10 bytes No aggregate types such as arrays or structures Just contiguously allocated bytes in memory Primitive Operations Perform arithmetic function on register or memory data Transfer data between memory and register Load data from memory into register Store register data into memory Transfer control Unconditional jumps to/from procedures Conditional branches

– 28 – CSCE 212H Spring 2011 Code for sum 0x : 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x45 0x08 0x89 0xec 0x5d 0xc3 Object Code Assembler Translates.s into.o Binary encoding of each instruction Nearly-complete image of executable code Missing linkages between code in different filesLinker Resolves references between files Combines with static run-time libraries E.g., code for malloc, printf Some libraries are dynamically linked Linking occurs when program begins execution Total of 13 bytes Each instruction 1, 2, or 3 bytes Starts at address 0x401040

– 29 – CSCE 212H Spring 2011 Machine Instruction Example C Code Add two signed integersAssembly Add 2 4-byte integers “Long” words in GCC parlance Same instruction whether signed or unsigned Operands: x :Register %eax y :MemoryM[ %ebp+8] t :Register %eax »Return function value in %eax Object Code 3-byte instruction Stored at address 0x int t = x+y; addl 8(%ebp),%eax 0x401046: Similar to expression x += y

– 30 – CSCE 212H Spring 2011 Disassembled : 0:55 push %ebp 1:89 e5 mov %esp,%ebp 3:8b 45 0c mov 0xc(%ebp),%eax 6: add 0x8(%ebp),%eax 9:89 ec mov %ebp,%esp b:5d pop %ebp c:c3 ret d:8d lea 0x0(%esi),%esi Disassembling Object Code Disassembler objdump -d p Useful tool for examining object code Analyzes bit pattern of series of instructions Produces approximate rendition of assembly code Can be run on either a.out (complete executable) or.o file

– 31 – CSCE 212H Spring 2011 Disassembled 0x :push %ebp 0x :mov %esp,%ebp 0x :mov 0xc(%ebp),%eax 0x :add 0x8(%ebp),%eax 0x :mov %ebp,%esp 0x40104b :pop %ebp 0x40104c :ret 0x40104d :lea 0x0(%esi),%esi Alternate Disassembly Within gdb Debugger gdb p disassemble sum Disassemble procedure x/13b sum Examine the 13 bytes starting at sum Object 0x401040: 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x45 0x08 0x89 0xec 0x5d 0xc3

– 32 – CSCE 212H Spring 2011 What Can be Disassembled? Anything that can be interpreted as executable code Disassembler examines bytes and reconstructs assembly source % objdump -d WINWORD.EXE WINWORD.EXE: file format pei-i386 No symbols in "WINWORD.EXE". Disassembly of section.text: : :55 push %ebp :8b ec mov %esp,%ebp :6a ff push $0xffffffff : push $0x a:68 91 dc 4c 30 push $0x304cdc91

– 33 – CSCE 212H Spring 2011 Moving Data movl Source,Dest: Move 4-byte (“long”) word Lots of these in typical code Operand Types Immediate: Constant integer data Like C constant, but prefixed with ‘ $ ’ E.g., $0x400, $-533 Encoded with 1, 2, or 4 bytes Register: One of 8 integer registers But %esp and %ebp reserved for special use Others have special uses for particular instructions Memory: 4 consecutive bytes of memory Various “address modes” %eax %edx %ecx %ebx %esi %edi %esp %ebp

– 34 – CSCE 212H Spring 2011 movl Operand Combinations Cannot do memory-memory transfers with single instruction movl Imm Reg Mem Reg Mem Reg Mem Reg SourceDestination movl $0x4,%eax movl $-147,(%eax) movl %eax,%edx movl %eax,(%edx) movl (%eax),%edx C Analog temp = 0x4; *p = -147; temp2 = temp1; *p = temp; temp = *p;

– 35 – CSCE 212H Spring 2011 Simple Addressing Modes Normal(R)Mem[Reg[R]] Register R specifies memory address movl (%ecx),%eax DisplacementD(R)Mem[Reg[R]+D] Register R specifies start of memory region Constant displacement D specifies offset movl 8(%ebp),%edx

– 36 – CSCE 212H Spring 2011 Using Simple Addressing Modes void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } swap: pushl %ebp movl %esp,%ebp pushl %ebx movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Body Set Up Finish

– 37 – CSCE 212H Spring 2011 Understanding Swap void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } movl 12(%ebp),%ecx# ecx = yp movl 8(%ebp),%edx# edx = xp movl (%ecx),%eax# eax = *yp (t1) movl (%edx),%ebx# ebx = *xp (t0) movl %eax,(%edx)# *xp = eax movl %ebx,(%ecx)# *yp = ebx Stack RegisterVariable %ecxyp %edxxp %eaxt1 %ebxt0 yp xp Rtn adr Old % ebp %ebp Offset Old % ebx -4

– 38 – CSCE 212H Spring 2011 Understanding Swap movl 12(%ebp),%ecx# ecx = yp movl 8(%ebp),%edx# edx = xp movl (%ecx),%eax# eax = *yp (t1) movl (%edx),%ebx# ebx = *xp (t0) movl %eax,(%edx)# *xp = eax movl %ebx,(%ecx)# *yp = ebx 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp0x104

– 39 – CSCE 212H Spring 2011 Understanding Swap movl 12(%ebp),%ecx# ecx = yp movl 8(%ebp),%edx# edx = xp movl (%ecx),%eax# eax = *yp (t1) movl (%edx),%ebx# ebx = *xp (t0) movl %eax,(%edx)# *xp = eax movl %ebx,(%ecx)# *yp = ebx 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 0x120 0x104

– 40 – CSCE 212H Spring 2011 Understanding Swap movl 12(%ebp),%ecx# ecx = yp movl 8(%ebp),%edx# edx = xp movl (%ecx),%eax# eax = *yp (t1) movl (%edx),%ebx# ebx = *xp (t0) movl %eax,(%edx)# *xp = eax movl %ebx,(%ecx)# *yp = ebx 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 0x124 0x120 0x104

– 41 – CSCE 212H Spring 2011 Understanding Swap movl 12(%ebp),%ecx# ecx = yp movl 8(%ebp),%edx# edx = xp movl (%ecx),%eax# eax = *yp (t1) movl (%edx),%ebx# ebx = *xp (t0) movl %eax,(%edx)# *xp = eax movl %ebx,(%ecx)# *yp = ebx 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x120 0x104

– 42 – CSCE 212H Spring 2011 Understanding Swap movl 12(%ebp),%ecx# ecx = yp movl 8(%ebp),%edx# edx = xp movl (%ecx),%eax# eax = *yp (t1) movl (%edx),%ebx# ebx = *xp (t0) movl %eax,(%edx)# *xp = eax movl %ebx,(%ecx)# *yp = ebx 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x x104

– 43 – CSCE 212H Spring 2011 Understanding Swap movl 12(%ebp),%ecx# ecx = yp movl 8(%ebp),%edx# edx = xp movl (%ecx),%eax# eax = *yp (t1) movl (%edx),%ebx# ebx = *xp (t0) movl %eax,(%edx)# *xp = eax movl %ebx,(%ecx)# *yp = ebx 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x x104

– 44 – CSCE 212H Spring 2011 Understanding Swap movl 12(%ebp),%ecx# ecx = yp movl 8(%ebp),%edx# edx = xp movl (%ecx),%eax# eax = *yp (t1) movl (%edx),%ebx# ebx = *xp (t0) movl %eax,(%edx)# *xp = eax movl %ebx,(%ecx)# *yp = ebx 0x120 0x124 Rtn adr %ebp Offset Address 0x124 0x120 0x11c 0x118 0x114 0x110 0x10c 0x108 0x104 0x100 yp xp %eax %edx %ecx %ebx %esi %edi %esp %ebp 456 0x124 0x x104

– 45 – CSCE 212H Spring 2011 Indexed Addressing Modes Most General Form D(Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]+ D] D: Constant “displacement” 1, 2, or 4 bytes Rb: Base register: Any of 8 integer registers Ri:Index register: Any, except for %esp Unlikely you’d use %ebp, either S: Scale: 1, 2, 4, or 8 Special Cases (Rb,Ri)Mem[Reg[Rb]+Reg[Ri]] D(Rb,Ri)Mem[Reg[Rb]+Reg[Ri]+D] (Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]]

– 46 – CSCE 212H Spring 2011 Address Computation Examples %edx %ecx 0xf000 0x100 ExpressionComputationAddress 0x8(%edx) 0xf x8 0xf008 (%edx,%ecx) 0xf x100 0xf100 (%edx,%ecx,4) 0xf *0x100 0xf400 0x80(,%edx,2) 2*0xf x80 0x1e080

– 47 – CSCE 212H Spring 2011

– 48 – CSCE 212H Spring 2011

– 49 – CSCE 212H Spring 2011

– 50 – CSCE 212H Spring 2011

– 51 – CSCE 212H Spring 2011