11-2 Chords and Arcs  Theorems: 11-4, 11-5, 11-6, 11-7, 11-8  Vocabulary: Chord.

Slides:



Advertisements
Similar presentations
Geometry Honors Section 9.1 Segments and Arcs of Circles
Advertisements

Circles. Parts of a Circle Circle A circle is the set of all points in a plane that are a given distance from a given point in the plane, called the.
Circle Theorems-“No Brainers”
11.2/11.3 Tangents, Secants, and Chords
Pg 603.  An angle whose vertex is the center of the circle.
12.2 Arcs and Chords.  Apply properties of Arcs  Apply properties of Chords.
Bell work Find the value of radius, x, if the diameter of a circle is 25 ft. 25 ft x.
Unit 6 Day 1 Circle Vocabulary. In your pairs look up the definitions for your vocabulary words.
Circles and Chords. Vocabulary A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
Sect Properties of Chords and Arcs Geometry Honors.
Apply Properties of Chords
Geometry Arcs and Chords September 13, 2015 Goals  Identify arcs & chords in circles  Compute arc measures and angle measures.
10.2 Arcs and Chords Central angle Minor Arc Major Arc.
Sect Arcs and Chords Goal 1 Using Arcs of Circles Goal 2 Using chords of Circles.
Chapter 10.3 Notes: Apply Properties of Chords
StatementReason 1. Given 2. Chords that intercept congruent arcs are congruent Example 1 3. All radii of a circle are congruent.
Chapter 10 Properties of Circles.
 A circle is defined by it’s center and all points equally distant from that center.  You name a circle according to it’s center point.  The radius.
6.3 – 6.4 Properties of Chords and Inscribed Angles.
Section 11-2 Chords and Arcs SPI 32B: Identify chords of circles given a diagram SPI 33A: Solve problems involving the properties of arcs, tangents, chords.
10.3 – Apply Properties of Chords
Circles Chapter 12.
Chapter 10 Circles Section 10.1 Goal – To identify lines and segments related to circles To use properties of a tangent to a circle.
11-2 Chords & Arcs 11-3 Inscribed Angles
GEOMETRY: Chapter : Chords#2. Image taken from: Geometry. McDougal Littell: Boston, P Theorem 10.4 In the same circle, or in congruent.
12.2 Chords and Arcs Theorem 12.4 and Its Converse Theorem –
9-3 Arcs and Chords Objectives: To recognize and use relationships among arcs, chords, and diameters.
Lesson 10.2 Arcs and Chords. Arcs of Circles Central Angle-angle whose vertex is the center of the circle. central angle.
Chord and Tangent Properties. Chord Properties C1: Congruent chords in a circle determine congruent central angles. ●
Section 10.2 – Arcs and Chords
Arcs and Chords Theorem 10.2 In a circle or in congruent circles, two minor arcs are are congruent if and only if their corresponding chords are congruent.
LESSON 11.2 CHORDS AND ARCS OBJECTIVE: To use chords, arcs and central angles to solve problems To recognize properties of lines through the center of.
Geometry 9.4 Arcs and Chords. Theorem In the same circle or in congruent circles: congruent arcs have congruent chords congruent chords have congruent.
Section 10-2 Arcs and Central Angles. Theorem 10-4 In the same circle or in congruent circles, two minor arcs are congruent if and only if their corresponding.
9.3 Circles Objective: Students identify parts of a circle and find central angle measures.
Main Idea 1: If the arcs are congruent, then the chords are congruent. REVERSE: If the chords are congruent, then the arcs are congruent. Main Idea 2:
Warm Up 3-8 Find X. Announcements Online HW due Wednesday night Warm Ups due Thursday Test Friday.
Objectives: To use the relationship between a radius and a tangent To use the relationship between two tangents from one point.
Goal 1: To use congruent chords, arcs, and central angles Goal 2: To recognize properties of lines through the center of a circle Check Skills You’ll Need.
Arcs and Chords Goal 1 Using Arcs of Circles
12.2 Chords and Arcs.
10.3 – Apply Properties of Chords
Unit 3: Circles & Spheres
Chords and Arcs Geometry 11-2.
Do Now 1.) Explain the difference between a chord and a secant.
Section 10.4 Arcs and Chords.
TOPIC 12-2.
Chapter 10: Properties of Circles
Assignment 1: 10.3 WB Pg. 127 #1 – 14 all
Lesson 8-4: Arcs and Chords
Geometry 11.4 Color Theory.
Circles.
7-3 Arcs and Chords Objectives:
Chords, secants and tangents
12-1 Tangent Lines.
12.1 Tangent lines -Theroem 12.1: if a line is tangent to a circle, then it will be perpendicular to the radius at the point of tangency -Theroem 12.3:
Central angle Minor Arc Major Arc
Section 11 – 2 Chords & Arcs Objectives:
12-2 Arcs and Chords.
Day 3.
Week 1 Warm Up Add theorem 2.1 here next year.
Central angle Minor Arc Major Arc
Section 10.2 Arcs and Chords.
Bellringer Have Worksheet from Monday (plus p. 767 #6 – 8, 18 – 19 on back) and Notes out on your Desk Work on p. 779 #44 – 45.
Standards: 7.0 Students prove and use theorems involving the properties of parallel lines cut by a transversal, the properties of quadrilaterals, and the.
12.2 Chords & Arcs.
Lesson 8-4: Arcs and Chords
Warm Up 1. Draw Circle O 2. Draw radius OR 3. Draw diameter DM
Chapter 9-4 Arcs and Chords.
Section 10.2 Arcs and Chords.
Presentation transcript:

11-2 Chords and Arcs  Theorems: 11-4, 11-5, 11-6, 11-7, 11-8  Vocabulary: Chord

Vocabulary  Chord  A segment whose endpoints are on a circle. P O Q

Theorem 11-4  Within a circle or in a congruent circles: 1. Congruent central angles have congruent chords. 2. Congruent chords have congruent arcs. 3. Congruent arcs have congruent central angles.

B O #1 Using Theorem 11-4 C F D P

Theorem 11-5  Within a circle or in a congruent circles: 1. Chords equidistant from the center are congruent. 2. Congruent chords are equidistant from the center.

#2 Using Theorem 11-5 x 18

Theorem 11-6  In a circle, a diameter that is perpendicular to a chord bisects the chord and its arcs.

Theorem 11-7  In a circle, a diameter that bisects a chord (that is not a diameter) is perpendicular to the chord.

Theorem 11-8  In a circle, the perpendicular bisector of a chord contains the center of the circle.

#3 Using Diameters and Chords xy