Cell reproduction and the division of the NUCLEUS and CYTOPLASM.

Slides:



Advertisements
Similar presentations
Cell Cycle and Mitosis 8.1 to 8.11
Advertisements

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Multicellular organisms depend on cell division for:
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 12 The Cell Cycle.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle. Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving.
Overview: The Key Roles of Cell Division
Fig Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle. Fig. 12-UN1 Telophase and Cytokinesis Anaphase Metaphase Prometaphase Prophase MITOTIC (M) PHASE Cytokinesis Mitosis S G1G1.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for –Development from a fertilized.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
100 µm200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal 1.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for: – Development from a.
Chapter 12.  The ability of organisms to produce more of their own kind best distinguishes living things from nonliving matter  The continuity of life.
The Cell Cycle. In unicellular organisms, division of one cell reproduces the entire organism In unicellular organisms, division of one cell reproduces.
Fig Origin of replication Two copies of origin E. coli cell Bacterial chromosome Plasma membrane Cell wall Origin.
The Cell Cycle. Key Concepts Most division results in genetically identical cells Cell cycle consists of alternating periods of mitosis and interphase.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of.
Chapter 12 The Cell Cycle Lab 3 Mitosis and Meiosis.
Multicellular organisms depend on cell division for: – Development from a fertilized cell – Growth – Repair.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 12 The Cell Cycle.
 Purpose of cell division › Unicellular organisms  Reproduction › Multicellular organisms  Development from a fertilized cell  Growth  Repair.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Cell Cycle. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Eukaryotic cell division consists of: – ________, the division.
Fig Fig µm200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Key Roles of Cell Division The continuity of life is based upon the reproduction.
Chapter 12 The Cell Cycle.  The continuity of life  Is based upon the reproduction of cells, or cell division.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
10 µm Fig Nucleus Chromatin condensing Nucleolus Chromosomes
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Fig Figure 12.1 How do a cell’s chromosomes change during cell division?
Chapter 15 The Eukaryotic Cell Cycle, Mitosis, & Meiosis
The Cell Cycle Chapter 12.
Chapter 12 The Cell Cycle.
The Key Roles of Cell Division
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12: The Cell Cycle
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
The Cell Cycle Chapter 12.
Presentation transcript:

Cell reproduction and the division of the NUCLEUS and CYTOPLASM

The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of life is based on the reproduction of cells, or cell division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-1

In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for: Development from a fertilized cell Growth Repair Cell division is an integral part of the cell cycle, the life of a cell from formation to its own division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig µm200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal

Fig. 12-2a 100 µm (a) Reproduction

Fig. 12-2b 200 µm (b) Growth and development

Most cell division results in daughter cells with identical genetic information, DNA A special type of division produces nonidentical daughter cells (gametes, or sperm and egg cells) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

All the DNA in a cell constitutes the cell’s genome A genome can consist of a single DNA molecule (common in prokaryotic cells) or a number of DNA molecules (common in eukaryotic cells) DNA molecules in a cell are packaged into chromosomes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig µm

Every eukaryotic species has a characteristic number of chromosomes in each cell nucleus Somatic cells (nonreproductive cells) have two sets of chromosomes Gametes (reproductive cells: sperm and eggs) have half as many chromosomes as somatic cells Eukaryotic chromosomes consist of chromatin, a complex of DNA and protein that condenses during cell division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

In preparation for cell division, DNA is replicated and the chromosomes condense Each duplicated chromosome has two sister chromatids, which separate during cell division The centromere is the narrow “waist” of the duplicated chromosome, where the two chromatids are most closely attached Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig µmChromosomes Chromosome duplication (including DNA synthesis) Chromo- some arm Centromere Sister chromatids DNA molecules Separation of sister chromatids Centromere Sister chromatids

Eukaryotic cell division consists of: Mitosis, the division of the nucleus Cytokinesis, the division of the cytoplasm Gametes are produced by a variation of cell division called meiosis Meiosis yields nonidentical daughter cells that have only one set of chromosomes, half as many as the parent cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The cell cycle consists of Mitotic (M) phase (mitosis and cytokinesis) Interphase (cell growth and copying of chromosomes in preparation for cell division) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Interphase (about 90% of the cell cycle) can be divided into subphases: G 1 phase (“first gap”) S phase (“synthesis”) G 2 phase (“second gap”) The cell grows during all three phases, but chromosomes are duplicated only during the S phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig S (DNA synthesis) MITOTIC (M) PHASE Mitosis Cytokinesis G1G1 G2G2

Mitosis is conventionally divided into five phases: Prophase Prometaphase Metaphase Anaphase Telophase Cytokinesis is well underway by late telophase BioFlix: Mitosis BioFlix: Mitosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig G 2 of Interphase Centrosomes (with centriole pairs) Chromatin (duplicated) Nucleolus Nuclear envelope Plasma membrane Early mitotic spindle Aster Centromere Chromosome, consisting of two sister chromatids Prophase Prometaphase Fragments of nuclear envelope Nonkinetochore microtubules Kinetochore microtubule Metaphase plate Spindle Centrosome at one spindle pole Anaphase Daughter chromosomes Telophase and Cytokinesis Cleavage furrow Nucleolus forming Nuclear envelope forming

Prophase Fig. 12-6a Prometaphase G 2 of Interphase

Fig. 12-6b PrometaphaseProphase G 2 of Interphase Nonkinetochore microtubules Fragments of nuclear envelope Aster Centromere Early mitotic spindle Chromatin (duplicated) Centrosomes (with centriole pairs) Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore microtubule

Fig. 12-6c MetaphaseAnaphase Telophase and Cytokinesis

Fig. 12-6d MetaphaseAnaphase Telophase and Cytokinesis Cleavage furrow Nucleolus forming Metaphase plate Centrosome at one spindle pole Spindle Daughter chromosomes Nuclear envelope forming

An aster (a radial array of short microtubules) extends from each centrosome The spindle includes the centrosomes, the spindle microtubules, and the asters Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

During prometaphase, some spindle microtubules attach to the kinetochores of chromosomes and begin to move the chromosomes At metaphase, the chromosomes are all lined up at the metaphase plate, the midway point between the spindle’s two poles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Microtubules Chromosomes Sister chromatids Aster Metaphase plate Centrosome Kineto- chores Kinetochore microtubules Overlapping nonkinetochore microtubules Centrosome 1 µm 0.5 µm

In anaphase, sister chromatids separate and move along the kinetochore microtubules toward opposite ends of the cell The microtubules shorten by depolymerizing at their kinetochore ends Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig EXPERIMENT Kinetochore RESULTS CONCLUSION Spindle pole Mark Chromosome movement Kinetochore Microtubule Motor protein Chromosome Tubulin subunits

Fig. 12-8a Kinetochore Spindle pole Mark EXPERIMENT RESULTS

Fig. 12-8b Kinetochore Microtubule Tubulin Subunits Chromosome movement Motor protein CONCLUSION

In animal cells, cytokinesis occurs by a process known as cleavage, forming a cleavage furrow In plant cells, a cell plate forms during cytokinesis Animation: Cytokinesis Animation: Cytokinesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cleavage furrow Fig. 12-9a 100 µm Daughter cells (a) Cleavage of an animal cell (SEM) Contractile ring of microfilaments

Fig. 12-9b Daughter cells (b) Cell plate formation in a plant cell (TEM) Vesicles forming cell plate Wall of parent cell New cell wallCell plate 1 µm

Fig Chromatin condensing Metaphase AnaphaseTelophase Prometaphase Nucleus Prophase Nucleolus Chromosomes Cell plate 10 µm

Fig a Nucleus Prophase 1 Nucleolus Chromatin condensing

Fig b Prometaphase 2 Chromosomes

Fig c Metaphase 3

Fig d Anaphase 4

Fig e Telophase 5 Cell plate 10 µm

Prokaryotes (bacteria and archaea) reproduce by a type of cell division called binary fission In binary fission, the chromosome replicates (beginning at the origin of replication), and the two daughter chromosomes actively move apart Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Origin of replication Two copies of origin E. coli cell Bacterial chromosome Plasma membrane Cell wall Origin

The sequential events of the cell cycle are directed by a distinct cell cycle control system, which is similar to a clock The cell cycle control system is regulated by both internal and external controls The clock has specific checkpoints where the cell cycle stops until a go-ahead signal is received Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig S G1G1 M checkpoint G2G2 M Control system G 1 checkpoint G 2 checkpoint

For many cells, the G 1 checkpoint seems to be the most important one If a cell receives a go-ahead signal at the G 1 checkpoint, it will usually complete the S, G 2, and M phases and divide If the cell does not receive the go-ahead signal, it will exit the cycle, switching into a nondividing state called the G 0 phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig G1G1 G0G0 G 1 checkpoint (a)Cell receives a go-ahead signal G1G1 (b) Cell does not receive a go-ahead signal

Fig M G1G1 S G2G2 M G1G1 SG2G2 M G1G1 MPF activity Cyclin concentration Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle Degraded cyclin Cdk G1G1 S G2G2 M G2G2 checkpoint Cyclin is degraded Cyclin MPF (b) Molecular mechanisms that help regulate the cell cycle Cyclin accumulation

An example of an internal signal is that kinetochores not attached to spindle microtubules send a molecular signal that delays anaphase Some external signals are growth factors, proteins released by certain cells that stimulate other cells to divide For example, platelet-derived growth factor (PDGF) stimulates the division of human fibroblast cells in culture Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Petri plate Scalpels Cultured fibroblasts Without PDGF cells fail to divide With PDGF cells prolifer- ate 10 µm

Another example of external signals is density-dependent inhibition, in which crowded cells stop dividing Most animal cells also exhibit anchorage dependence, in which they must be attached to a substratum in order to divide Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Anchorage dependence Density-dependent inhibition (a) Normal mammalian cells (b) Cancer cells 25 µm

Cancer cells exhibit neither density-dependent inhibition nor anchorage dependence Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cancer cells do not respond normally to the body’s control mechanisms Cancer cells may not need growth factors to grow and divide: They may make their own growth factor They may convey a growth factor’s signal without the presence of the growth factor They may have an abnormal cell cycle control system Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A normal cell is converted to a cancerous cell by a process called transformation Cancer cells form tumors, masses of abnormal cells within otherwise normal tissue If abnormal cells remain at the original site, the lump is called a benign tumor Malignant tumors invade surrounding tissues and can metastasize, exporting cancer cells to other parts of the body, where they may form secondary tumors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Tumor A tumor grows from a single cancer cell. Glandular tissue Lymph vessel Blood vessel Metastatic tumor Cancer cell Cancer cells invade neigh- boring tissue. Cancer cells spread to other parts of the body. Cancer cells may survive and establish a new tumor in another part of the body

Fig. 12-UN2