KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud.

Slides:



Advertisements
Similar presentations
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Andreas Wieser Hornisgrinde 1160 m asl Supersite.
Advertisements

Institut für Physik der Atmosphäre POLDIRAD and LINET observations during COPS Martin Hagen and Hartmut Höller DLR Oberpfaffenhofen.
1 Do Polluted Clouds Have Sharper Cloud Edges? Christine Chiu, Julian Mann, Robin Hogan University of Reading Alexander Marshak, Warren Wiscombe NASA Goddard.
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
C=0.3D +/- 25% Realistic range of aspect ratios: - columns, plates, branched, dendrites Auer & Veal (1970) sizes 100 to 1mm - bullet rosette arm widths.
Convection Initiative discussion points What info do parametrizations & 1.5-km forecasts need? –Initiation mechanism, time-resolved cell size & updraft.
Radar/lidar observations of boundary layer clouds
Integrated Profiling at the AMF
Presented By: Usama Ashraf ID: Terminal Doppler Weather Radar (TDWR): TDWR is a doppler weather radar system used primarily for the detection.
Cloud Radar in Space: CloudSat While TRMM has been a successful precipitation radar, its dBZ minimum detectable signal does not allow views of light.
Target Separation and Classification using Cloud Radar Doppler-Spectra Matthias Bauer-Pfundstein, METEK GmbH Ulrich Görsdorf, Meteorologisches Observatorium.
7. Radar Meteorology References Battan (1973) Atlas (1989)
ATS 351 Lecture 9 Radar. Radio Waves Electromagnetic Waves Consist of an electric field and a magnetic field Polarization: describes the orientation.
Echo Tops Fairly accurate at depicting height of storm tops Inaccurate data close to radar because there is no beam angle high enough to see tops. Often.
Lecture 12 Content LIDAR 4/15/2017 GEM 3366.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
Towards improved QPE with a local area X-band radar in the framework of COPS F. Tridon, J. Van Baelen and Y. Pointin Laboratoire de Météorologie Physique,
The Barbados Cloud Observatory: a first outlook
International Research Centre for Telecommunications and Radar High resolution atmospheric profiling with the S-band Doppler polarimetric radar TARA Christine.
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
Remote sensing of Stratocumulus using radar/lidar synergy Ewan O’Connor, Anthony Illingworth & Robin Hogan University of Reading.
Günther Haase Tomas Landelius Daniel Michelson Generation of superobservations (WP2)
COPS-GOP-WS3 Hohenheim 2006_04_10 Micro- Rain- Radar Local Area Weather Radar Cloud Radar Meteorological Institute University Hamburg Gerhard Peters.
Balloon-Borne Sounding System (BBSS) Used for atmospheric profiling Measures P, T, RH, wind speed and direction Uncertainties arise from incorrect surface.
The Doppler Effect in Meteorology Carmen Fragapane.
Spaceborne Weather Radar
Ben Kravitz November 5, 2009 LIDAR. What is LIDAR? Stands for LIght Detection And Ranging Micropulse LASERs Measurements of (usually) backscatter from.
What controls the shape of a real Doppler spectrum?
Lidar remote sensing for the characterization of the atmospheric aerosol on local and large spatial scale.
The Remote Sensing of Winds Student: Paul Behrens Placement and monitoring of wind turbines Supervisor: Stuart Bradley.
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
Radar equation review 1/19/10. Radar eq (Rayleigh scatter) The only variable is h, the pulse length Most radars have a range of h values. Rewrite the.
Remote-sensing of the environment (RSE) ATMOS Analysis of the Composition of Clouds with Extended Polarization Techniques L. Pfitzenmaier, H. Russchenbergs.
July 2001Zanjan, Iran1 Atmospheric Profilers Marc Sarazin (European Southern Observatory)
A Radar Data Assimilation Experiment for COPS IOP 10 with the WRF 3DVAR System in a Rapid Update Cycle Configuration. Thomas Schwitalla Institute of Physics.
Delft University of Technology 1 Do eddy dissipation rate retrievals work for precipitation profiling Doppler radar?, CESAR Science Day, June 18th, 2014.
G O D D A R D S P A C E F L I G H T C E N T E R Goddard Lidar Observatory for Winds (GLOW) Wind Profiling from the Howard University Beltsville Research.
Radar Observation in Clear Sky 이동인 부경대학교 환경대기과학과.
Lidar Working Group on Space-Based Winds, Snowmass, Colorado, July 17-21, 2007 A study of range resolution effects on accuracy and precision of velocity.
International Research Centre for Telecommunications and Radar High resolution 3D wind profiling using an S-band polarimetric FM-CW radar: dealiasing techniques.
NARVAL South Lutz Hirsch, Friedhelm Jansen Sensor Synergy While Radars and Lidars provide excellent spatial resolution but only ambiguous information on.
B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar Measurements to Space Using Wind Profile Measurements from GLOW.
Application of a Portable Doppler Wind Lidar for Wildfire Plume Measurements Allison Charland and Craig Clements Department of Meteorology and Climate.
Validation of TRMM rainfall products at Gadanki T. Narayana Rao NARL, Gadanki K. Nakamura, HyARC, Nagoya, Japan D. Narayana Rao, NARL, Gadanki National.
, UTC. Supercooled liquid water Moments only from „principal peak“; can change between liquid and ice peak depending on which one is.
Precipitation studies with RADARS and use of WP/RASS By S.H. Damle.
RAdio Detection And Ranging. Was originally for military use 1.Sent out electromagnetic radiation (Active) 2.Bounced off an object and returned to a listening.
Dual-Polarization and Dual-Wavelength Radar Measurements Vivek National Center for Atmospheric Research Boulder, Colorado I.Polarization and dual- wavelength.
Reflectivity and Radial Velocity
Delft University of Technology 1 CESAR Science Day, 19 June 2013 Albert Oude Nijhuis Dynamics of turbulence in precipitation: Unravelling the eddies.
WEATHER SIGNALS Chapter 4 (Focus is on weather signals or echoes from radar resolution volumes filled with countless discrete scatterers---rain, insects,
1 Atmospheric profiling to better understand fog and low level cloud life cycle ARM/EU workshop on algorithms, May 2013 J. Delanoe (LATMOS), JC.
POLIS – Portable Lidar System High Resolution Cloud Top Height Measurements using an Airborne Lidar System during BBC 2 Campaign May 2003 Birgit Heese.
KNMI 35 GHz Cloud Radar & Cloud Classification* Henk Klein Baltink * Robin Hogan (Univ. of Reading, UK)
RADAR METEOROLOGY Courtney Schumacher Texas A&M University ATMO 352.
Image structures: rain shafts, cold pools, gusts Separate rain fall velocity from air velocity – turbulence retrieval– microphysical retrieval Diurnal.
Retrieval of Cloud Phase and Ice Crystal Habit From Satellite Data Sally McFarlane, Roger Marchand*, and Thomas Ackerman Pacific Northwest National Laboratory.
A Combined Radar-Radiometer Approach to Estimate Rain Rate Profile and Underlying Surface Wind Speed over the Ocean Shannon Brown and Christopher Ruf University.
Target Separation and Classification using Cloud Radar Doppler-Spectra Matthias Bauer-Pfundstein, METEK GmbH Ulrich Görsdorf, Meteorologisches Observatorium.
Ship-Based Measurements of Cloud Microphysics and PBL Properties in Precipitating Trade Cumuli During RICO Institutions: University of Miami; University.
A Moment Radar Data Emulator: The Current Progress and Future Direction Ryan M. May.
What is Doppler Weather Radar
LIDAR Ben Kravitz November 5, 2009.
Mechanical and Aerospace Engineering
Huailin Chen, Bruce Gentry, Tulu Bacha, Belay Demoz, Demetrius Venable
Identifying tornadoes using Doppler radar
the University of Oklahoma
Examples of spectral fields
Validation of airborne 1
Radiometer Physics GmbH
Presentation transcript:

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier 4th Symposium on Lidar Atmospheric Applications 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Institute for Meteorology and Climate Research, KIT Karlsruhe, Germany

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Contents Horizontal wind –complementary profiles and –identification of measurement errors Vertical wind –in different atmospheric situations –a new approach estimating rain-drop size-distributions –complementary profiles of vertical velocity variance

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Instrumental and experimental setup 2 µm Doppler lidar 35.5 GHz cloud radar Collocated on Hornisgrinde mountain (Black Forest) and performing a coordinated scan strategy from June to August 2007, COPS campaign

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Horizontal wind lidar radar Hypothesis: aerosol drifts with horizontal wind independent of its size simultaneous measurements deliver same results

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Horizontal wind Hypothesis: aerosol drifts with horizontal wind independent of its size simultaneous measurements deliver same results Increase of available information from 32% using only lidar to 51% using the combination.

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Horizontal wind Hypothesis: aerosol drifts with horizontal wind independent of its size simultaneous measurements deliver same results velocities differ by

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Horizontal wind Hypothesis: aerosol drifts with horizontal wind independent of its size simultaneous measurements deliver same results Ground clutter problem velocities differ by

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Horizontal wind Hypothesis: aerosol drifts with horizontal wind independent of its size simultaneous measurements deliver same results Ground clutter problem involving ground clutter ground clutter corrected velocities differ by

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Vertical wind Hypothesis: size dependent fall velocity of the larger aerosols and droplets simultaneously measurements deliver different results due to different wavelengths of the instruments and so different scatter mechanism

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Vertical wind Clear air day 82.1% agree better than 0.5 ms -1 Hypothesis: size dependent fall velocity of the larger aerosols and droplets simultaneously measurements deliver different results due to different wavelengths of the instruments and so different scatter mechanism

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Vertical wind During rain Mean difference of 3 ms -1 Hypothesis: size dependent fall velocity of the larger aerosols and droplets simultaneously measurements deliver different results due to different wavelengths of the instruments and so different scatter mechanism

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Vertical wind during rain Lidar double peaks

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Vertical wind during rain Lidar double peaks

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Vertical wind during rain Lidar double peaks

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Vertical wind during rain Radar Rayleigh scattering reflectivity proportional D 6 Lidar optical scattering backscatter proportional D 2 Size dependent terminal fall velocity and γ distribution of rain-drop-size Idea: Estimating rain drop size distribution from velocity difference lidar radar

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Power spectra and vertical wind variance Is vertical velocity variance influenced by the differences of measured vertical velocity? Clear air conditions Light rain conditions Clouds ? lidar radar

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Conclusions Increase of valid horizontal wind information Little redundant measurements Potential to detect measurement errors Differences in vertical wind velocity due to terminal size dependent fall velocities of scatterers New approach to estimate rain drop size distribution from different measured velocities Clear air power spectra behave quite similar, potential to extend profiles of vertical velocity variance into clouds Measurement combination of a cloud radar and a Doppler lidar allows new measurement approaches.

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Thanks Thanks for attention. For details please see manuscript.

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Additionally information

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Instrument specifications 0.1 … 25° s -1 Up to 10° s -1 Scan velocity -5 … 185°45 … 135°Elevation angle 0 … 360°-3 … 363°Azimuth angle 72 m30 mSpatial resolution 350 m150 mLowest range gate Range gates 4.5 kW30 kWPeak power 100 MHz50 MHzSampling rate ± 20 ms -1 ± 10.6 ms -1 Unambiguous velocity 500 Hz5 kHzPulse repetition frequency 425 ns200 nsPulse width 2023 nm8.44 mmwavelength Wind lidarCloud radar

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 5.3 Advantages of a coordinated scanning Doppler lidar and cloud radar system for wind measurements K. Träumner, J. Handwerker, A. Wieser, J. Grenzhäuser and C. Kottmeier Effect ground clutter correction