1 ECEN 619-600 “Internet Protocols and Modeling”, Spring 2011 Slide 5.

Slides:



Advertisements
Similar presentations
OSI Model OSI MODEL.
Advertisements

International Standards Organization Open Systems Interconnect (OSI) Reference Model Advanced Computer Networks.
CS 582 / CMPE 481 Distributed Systems Communications.
OSI Model MIS 416 – Module II Spring 2002 Networking and Computer Security.
Semester Copyright USM EEE442 Computer Networks Introduction: Protocols En. Mohd Nazri Mahmud MPhil (Cambridge, UK) BEng (Essex, UK)
Protocols and the TCP/IP Suite
EE 4272Spring, 2003 Protocols & Architecture A Protocol Architecture is the layered structure of hardware & software that supports the exchange of data.
1 Review of Important Networking Concepts Introductory material. This module uses the example from the previous module to review important networking concepts:
Data Communications Architecture Models. What is a Protocol? For two entities to communicate successfully, they must “speak the same language”. What is.
William Stallings Data and Computer Communications 7 th Edition Chapter 2 Protocols and Architecture.
1 ECE 683 Computer Network Design & Analysis Note 2: Applications and Layered Architectures.
COE 342: Data & Computer Communications (T042) Dr. Marwan Abu-Amara Chapter 2: Protocols and Architecture.
Computer Networks with Internet Technology William Stallings
 The Open Systems Interconnection model (OSI model) is a product of the Open Systems Interconnection effort at the International Organization for Standardization.
OIS Model TCP/IP Model.
Lecturer: Tamanna Haque Nipa
1 Review of Important Networking Concepts Introductory material. This slide uses the example from the previous module to review important networking concepts:
CS 356 Systems Security Spring Dr. Indrajit Ray
1 TCP/IP architecture A set of protocols allowing communication across diverse networks Out of ARPANET Emphasize on robustness regarding to failure Emphasize.
Network Architecture and Protocol Concepts. Network Architectures (1) The network provides one or more communication services to applications –A service.
Review: – computer networks – topology: pair-wise connection, point-to-point networks and broadcast networks – switching techniques packet switching and.
OSI Model Honolulu Community College Cisco Academy Training Center
Chapter 2 Network Models
Presentation on Osi & TCP/IP MODEL
What is a Protocol A set of definitions and rules defining the method by which data is transferred between two or more entities or systems. The key elements.
Layer Architecture of Network Protocols
1 ELEN602 Lecture 2 Review of Last Lecture Layering.
Definitions Protocol (1) An agreement between the communicating parties on how communication is to proceed. (2) A set of rules that governs how two or.
Internet Addresses. Universal Identifiers Universal Communication Service - Communication system which allows any host to communicate with any other host.
William Stallings Data and Computer Communications 7 th Edition Data Communications and Networks Overview Protocols and Architecture.
Computer Networks (CS 132/EECS148) General Networking Example Karim El Defrawy Donald Bren School of Information and Computer Science University of California.
Overview of Network Protocols, Services & Layering OSI Reference Model TCP/IP Architecture Error Detection and Correction.
1 Review - OSI Model n OSI Reference Model u represents the communications process. u 7 layers: physical, data link, network, transport, session, presentation.
1 Chapter 2 Applications and Layered Architectures Protocols, Services & Layering OSI Reference Model TCP/IP Architecture How the Layers Work Together.
NET 221D:Computer Networks Fundamentals
Network Applications and Layered Architectures Protocols OSI Reference Model.
Spring 2006Computer Networks1 Chapter 2 Network Models.
UNDERSTANDING THE HOST-TO-HOST COMMUNICATIONS MODEL - OSI LAYER & TCP/IP MODEL 1.
Chapter 2 Applications and Layered Architectures Protocols, Services & Layering OSI Reference Model TCP/IP Architecture How the Layers Work Together Berkeley.
Network Applications and Layered Architectures Protocols OSI Reference Model.
Introduction Contain slides by Leon-Garcia and Widjaja.
TCP/IP Protocol Architecture CSE 3213 – Fall
CHAPTER 4 PROTOCOLS AND THE TCP/IP SUITE Acknowledgement: The Slides Were Provided By Cory Beard, William Stallings For Their Textbook “Wireless Communication.
Open System Interconnection Describe how information from a software application in one computer moves through a network medium to a software application.
1. Layered Architecture of Communication Networks: OSI Reference Model.
1 Chapter 4. Protocols and the TCP/IP Suite Wen-Shyang Hwang KUAS EE.
Protocol Suits and Layering Models OSI Model Dr. Abraham UTPA.
Net 221D:Computer Networks Fundamentals
1 Protocol Layering Myungchul Kim Tel:
Chapter 2 Applications and Layered Architectures
- 1 - DPNM Review of Important Networking Concepts J. Won-Ki Hong Dept. of Computer Science and Engineering POSTECH Tel:
Network Models. The OSI Model Open Systems Interconnection (OSI). Developed by the International Organization for Standardization (ISO). Model for understanding.
Communication Networks NETW 501 Tutorial 2
TUNALIData Communications1 Chapter 2 Protocols and Architecture.
Computer Engineering and Networks, College of Engineering, Majmaah University Protocols OSI reference MODEL TCp /ip model Mohammed Saleem Bhat
Computer Networking A Top-Down Approach Featuring the Internet Introduction Jaypee Institute of Information Technology.
Roadmap  Introduction to Basics  Computer Network – Components | Classification  Internet  Clients and Servers  Network Models  Protocol Layers.
OSI Model OSI MODEL. Communication Architecture Strategy for connecting host computers and other communicating equipment. Defines necessary elements for.
OSI Model OSI MODEL.
What is a Protocol A set of definitions and rules defining the method by which data is transferred between two or more entities or systems. The key elements.
Lecture (2).
Chapter 2 Applications and Layered Architectures
Computer Networks with Internet Technology William Stallings
OSI Protocol Stack Given the post man exemple.
Lecturer, Department of Computer Application
DEPARTMENT OF COMPUTER SCIENCE
Communication Networks NETW 501
OSI Model OSI MODEL.
Computer Networking A Top-Down Approach Featuring the Internet
ECE 683 Computer Network Design & Analysis
Presentation transcript:

1 ECEN “Internet Protocols and Modeling”, Spring 2011 Slide 5

2 Applications and Layered Architectures OSI Reference Model

3 Why Layering? Layering simplifies design, implementation, and testing by partitioning overall communications process into parts Protocol in each layer can be designed separately from those in other layers Protocol makes “calls” for services from layer below Layering provides flexibility for modifying and evolving protocols and services without having to change layers below Monolithic non-layered architectures are costly, inflexible, and soon obsolete

4 Open Systems Interconnection Network architecture: –Definition of all the layers –Design of protocols for every layer By the 1970s every computer vendor had developed its own proprietary layered network architecture Problem: computers from different vendors could not be networked together Open Systems Interconnection (OSI) was an international effort by the International Organization for Standardization (ISO) to enable multivendor computer interconnection

5 OSI Reference Model Describes a seven-layer abstract reference model for a network architecture Purpose of the reference model was to provide a framework for the development of protocols OSI also provided a unified view of layers, protocols, and services which is still in use in the development of new protocols Detailed standards were developed for each layer, but most of these are not in use TCP/IP protocols preempted deployment of OSI protocols

6 7-Layer OSI Reference Model Application Layer Presentation Layer Session Layer Transport Layer Network Layer Data Link Layer Physical Layer Application Layer Presentation Layer Session Layer Transport Layer Network Layer Data Link Layer Physical Layer Network Layer Application Data Link Layer Physical Layer Network Layer Data Link Layer Physical Layer Communicating End Systems One or More Network Nodes End-to-End Protocols

7 Physical Layer Transfers bits across link Definition & specification of the physical aspects of a communications link –Mechanical: cable, plugs, pins... –Electrical/optical: modulation, signal strength, voltage levels, bit times, … –functional/procedural: how to activate, maintain, and deactivate physical links… Ethernet, DSL, cable modem, telephone modems… Twisted-pair cable, coaxial cable optical fiber, radio, infrared, …

8 Data Link Layer Transfers frames across direct connections Groups bits into frames Detection of bit errors; Retransmission of frames Activation, maintenance, & deactivation of data link connections Medium access control for local area networks Flow control Data Link Layer Physical Layer Data Link Layer Physical Layer frames bits

9 Network Layer Transfers packets across multiple links and/or multiple networks Addressing must scale to large networks Nodes jointly execute routing algorithm to determine paths across the network Forwarding transfers packet across a node Congestion control to deal with traffic surges Connection setup, maintenance, and teardown when connection-based

10 Internetworking Internetworking is part of network layer and provides transfer of packets across multiple possibly dissimilar networks Gateways (routers) direct packets across networks G = gateway H = host Net 1 Net 5 Net 3 Net 2 H Net 3 G H H H G G G G G Net 1Net 2Net 4Net 5 Ethernet LAN ATM Switch ATM Switch ATM Switch ATM Switch ATM Network

11 Transport Layer Transfers data end-to-end from process in a machine to process in another machine Reliable stream transfer or quick-and-simple single-block transfer Port numbers enable multiplexing Message segmentation and reassembly Connection setup, maintenance, and release Transport Layer Network Layer Transport Layer Network Layer Network Layer Network Layer Communication Network

12 Application & Upper Layers Application Layer: Provides services that are frequently required by applications: DNS, web access, file transfer, … Presentation Layer: machine- independent representation of data… Session Layer: dialog management, recovery from errors, … Application Layer Presentation Layer Session Layer Transport Layer Application Layer Transport Layer Application Incorporated into Application Layer

13 Headers & Trailers Each protocol uses a header that carries addresses, sequence numbers, flag bits, length indicators, etc… CRC check bits may be appended for error detection Application Layer Transport Layer Network Layer Data Link Layer Physical Layer Application Layer Transport Layer Network Layer Data Link Layer Physical Layer Application APP DATA AHAPP DATA TH AHAPP DATA NHTH AHAPP DATA DHNHTH AHAPP DATA CRC bits

14 OSI Unified View: Protocols Layer n in one machine interacts with layer n in another machine to provide a service to layer n +1 The entities comprising the corresponding layers on different machines are called peer processes. The machines use a set of rules and conventions called the layer-n protocol. Layer-n peer processes communicate by exchanging Protocol Data Units (PDUs) n Entity n Entity Layer n peer protocol n-PDUs

15 OSI Unified View: Services Communication between peer processes is virtual and actually indirect Layer n+1 transfers information by invoking the services provided by layer n Services are available at Service Access Points (SAP’s) Each layer passes data & control information to the layer below it until the physical layer is reached and transfer occurs The data passed to the layer below is called a Service Data Unit (SDU) SDU’s are encapsulated in PDU’s

16 n+1 entity n-SAP n+1 entity n-SAP n entity n-SDU H H n-PDU Layers, Services & Protocols

17 Interlayer Interaction layer N+1 userN provider System ASystem B N providerN+1 user Request Indication Response Confirm

18 Connectionless & Connection- Oriented Services Connection-Oriented –Three-phases: 1.Connection setup between two SAPs to initialize state information 2.SDU transfer 3.Connection release –E.g. TCP, ATM Connectionless –Immediate SDU transfer –No connection setup –E.g. UDP, IP Layered services need not be of same type –TCP operates over IP –IP operates over ATM

19 n-PDU Segmentation & Reassembly A layer may impose a limit on the size of a data block that it can transfer for implementation or other reasons Thus a layer-n SDU may be too large to be handled as a single unit by layer- (n-1) Sender side: SDU is segmented into multiple PDUs Receiver side: SDU is reassembled from sequence of PDUs n-SDU n-PDU Segmentation (a) n-SDU n-PDU Reassembly (b)

20 n+1 entity n+1 entity n+1 entity n+1 entity Multiplexing Sharing of layer n service by multiple layer n+1 users Multiplexing tag or ID required in each PDU to determine which users an SDU belongs to n entity n-SDU H H n-PDU

21 Summary Layers: related communications functions –Application Layer: HTTP, DNS –Transport Layer: TCP, UDP –Network Layer: IP Services: a protocol provides a communications service to the layer above –TCP provides connection-oriented reliable byte transfer service –UDP provides best-effort datagram service Each layer builds on services of lower layers –HTTP builds on top of TCP –DNS builds on top of UDP –TCP and UDP build on top of IP