1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce.

Slides:



Advertisements
Similar presentations
Finite element seismic analysis of a guyed mast
Advertisements

Optimal placement of MR dampers
An-Najah National University
Scissor-Jack-Damper System for Reduction of Stay Cable
MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법
Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift Marios Panagiotou Assistant Professor, University of.
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Konstantinos Agrafiotis
Record Processing Considerations for Analysis of Buildings Moh Huang California Strong Motion Instrumentation Program California Geological Survey Department.
Lecture 2 January 19, 2006.
Solution of Eigenproblem of Non-Proportional Damping Systems by Lanczos Method In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics.
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Cheng Chen Ph.D., Assistant Professor School of Engineering San Francisco State University Probabilistic Reliability Analysis of Real-Time Hybrid Simulation.
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
1 NEESR Project Meeting 22/02/2008 Modeling of Bridge Piers with Shear-Flexural Interaction and Bridge System Response Prof. Jian Zhang Shi-Yu Xu Prof.
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Part II: Model Class Selection Given: Dynamic data from system and set of candidate model classes where each model class defines a set of possible predictive.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
* 김 만철, 정 형조, 박 선규, 이 인원 * 김 만철, 정 형조, 박 선규, 이 인원 구조동역학 및 진동제어 연구실 구조동역학 및 진동제어 연구실 한국과학기술원 토목공학과 중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석 1998 한국전산구조공학회 가을.
Computational Structural Engineering Institute Autumn Conference 2002 Oct , 2002 VIBRATION CONTROL OF BRIDGE FOR SERVICEABILITY Jun-Sik Ha 1),
Presented by: Sasithorn THAMMARAK (st109957)
Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings Kyu-Sik.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 A Comparative Study on Aseismic Performances of Base Isolation Systems for Multi-span Continuous.
Hybrid System Controlled by a  -Synthesis Method for a Seismically Excited Cable-Stayed Bridge 2004 추계 학술대회 소음진동분야 NRL 2 지진하중을 받는 사장교를 위한  - 합성법을 이용한.
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
대한토목공학회 추계 학술발표회 대구 2003 년 10 월 24 일 T. X. Nguyen, 한국과학기술원 건설 및 환경공학과 박사과정 김병완, 한국과학기술원 건설 및 환경공학과 박사후연구원 정형조, 세종대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과.
Speaker : Yunjeong Son Master’s Course, Hongik University
The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor,
BASICS OF DYNAMICS AND ASEISMIC DESIGN
Kyu-Sik Park Kyu-Sik Park, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Research Assistant Professor, KAIST, Korea In-Won Lee In-Won Lee,
1 지진시 구조물의 지능제어 기법 Intelligent Control of Structures under Earthquakes 김동현 : 한국과학기술원 토목공학과, 박사과정 이규원 : 전북대학교 토목공학과, 교수 이종헌 : 경일대학교 토목공학과, 교수 이인원 : 한국과학기술원.
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
HYBRID SYSTEM CONTROLLED BY A  -SYNTHESIS METHOD International Symposium on Earthquake Engineering Commemorating 10 th Anniversary of the 1995 Kobe Earthquake.
Seismic analysis of Bridges Part II
년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원.
BY Eng.\ Ayman Abdo Mohamed Hussein
Eduardo Ismael Hernández UPAEP University, MEXICO
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
Assessment of Base-isolated CAP1400 Nuclear Island Design
Earthquake resistant buildings
A BRIDGE WITH VEHICLE LOADS
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Robust Hybrid Control System
Robust Hybrid Control System
A Survey on State Feedback AMD Control
Modified Sturm Sequence Property for Damped Systems
a Bang-Bang Type Controller
Control of a Hybrid System using a -Synthesis Method
Presentation transcript:

1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce Seismic Responses 이 성진 : 한국과학기술원 건설 및 환경공학과 석사과정 박 규식 : 한국과학기술원 건설 및 환경공학과 박사과정 이 종헌 : 경일대학교 토목공학과 교수 이 인원 : 한국과학기술원 건설 및 환경공학과 교수 (Oct. 24. ~ 25., 2003) 2003 년도

2 Structural Dynamics & Vibration Control Lab., KAIST Backgrounds Introduction  Lead Rubber Bearing (LRB) for base isolation system  Design of base isolation system for building and short span bridges. - Design natural period of structure or effective period of base isolator  Long span bridge such as cable-stayed bridges - Flexible : long period modes and natural seismic isolation - Small structural damping

3 Structural Dynamics & Vibration Control Lab., KAIST Objective  it is difficult to apply this procedure and guidelines of isolation system directly to cable-stayed bridges.  Suggest the design procedure and guidelines of LRB for seismically excited cable-stayed bridge.

4 Structural Dynamics & Vibration Control Lab., KAIST, : elastic & plastic stiffness : effective stiffness : characteristic shear strength, : yield and ultimate strength, : yield and ultimate displacement Fig. 1 Behavior and design parameters of LRB  Determine the,, to minimize the earthquake forces and displacements. Design Procedure of LRB Design Parameters of LRB

5 Structural Dynamics & Vibration Control Lab., KAIST  The design parameters of LRB - design index (DI) is minimized or unchanged (less than 1% of maximum DI) for variation of design parameters. Proposed Design Procedure  i = 1 ~ 5 - Five important responses of cable-stayed bridge : base shear and moment at towers : shear and moment at deck level at towers : deck displacement (longitudinal direction)

6 Structural Dynamics & Vibration Control Lab., KAIST  Design procedure - Step 1 : design earthquake (history or artificial earthquake) - Step 2 : appropriate is selected for variation of. : and are assumed. - Step 3 : appropriate is selected for variation of. : use selected and assume. - Step 4 : appropriate is selected for variation of. - Step 5 : iterate step 2 ~ 4 until parameters remain unchanged.

7 Structural Dynamics & Vibration Control Lab., KAIST Numerical Examples Bridge Model Fig. 2 Bill Emerson Memorial Bridge (Benchmark cable-stayed bridge model)  Benchmark cable-stayed bridges (Dyke et al. 2003) m350.6 m m

8 Structural Dynamics & Vibration Control Lab., KAIST Design Earthquakes  Scaled El Centro earthquake (1940) g’s ( design PGA ) Fig. 3 Design Earthquake (Scaled El Centro)  Artificial earthquake ( Stationary Kanai-Tajimi filter ) - = 37.3 rad/s, = 0.3 (Spencer et al.)

9 Structural Dynamics & Vibration Control Lab., KAIST Properties of Designed LRB DI ** LRB I (Scaled El Centro)1.4W * (tf/m)0.13W (tf) LRB II (Kanai – Tajimi)1.5W (tf/m)0.12W (tf) Table 1. Properties of Designed LRB * : Pier 1, (tf), Pier 2, (tf) ** : Max. of DI =5  Need the stiffer rubber and bigger lead core size than general buildings and short-span bridges.  The plastic behavior of lead core of LRB is important to reduce the seismic response for cable-stayed bridge.

10 Structural Dynamics & Vibration Control Lab., KAIST Performance of Designed LRB  Evaluation Criteria for Benchmark Cable-stayed Bridge Max. base shear at towers Max. shear at deck level Max. base moment at towers Max. moment at deck level Max. cable deviation Max. deck displacement at abutment Normed base shear at towers Normed shear at deck level Normed base moment at towers Normed moment at deck level Normed cable deviation Max control force Max device stroke Table 2. Evaluation criteria

11 Structural Dynamics & Vibration Control Lab., KAIST  El Centro : 1940, Imperial Valley, g’s LRB I : Scaled El Centro LRB II : Kana-Tajimi Artificial Earthquake Park et al. : “ 납고무 받침의 비선형성을 고려한 벤치마크 사장교의 복합제어 ”, 한국지진공학회논문집, Vol. 3, No. 4, pp N-K : Naeim-Kelly Method ( T eff = 1.5 sec )

12 Structural Dynamics & Vibration Control Lab., KAIST  Mexico City : 1985, Galeta de Campos, g’s

13 Structural Dynamics & Vibration Control Lab., KAIST  Gebze : 1999, Turkey Gebze, g’s

14 Structural Dynamics & Vibration Control Lab., KAIST Design Properties of LRB for Earthquake Frequency  The behavior of structure is affected by not only PGA, but also the dominant frequency of earthquake.  The PGA of earthquakes : 0.36g’s Fig. 7 Power Spectral Density of input earthquakes

15 Structural Dynamics & Vibration Control Lab., KAIST  Properties of LRB Frequency Scaled Mexico City0.5 Hz0.9W (tf/m)0.15W (tf)10 Scaled El Centro1.5 Hz1.4W (tf/m)0.13W (tf)11 Scaled Gebze2.0 Hz1.5W (tf/m)0.16W (tf)9 Table 3. Properties of LRB for earthquake frequency - and of LRB : affected by dominant frequency of earthquake. - Low frequency : Need the more flexible LRB. - and of LRB : not related to dominant frequency of earthquake.

16 Structural Dynamics & Vibration Control Lab., KAIST Conclusions The guidelines and procedure of designing LRB for seismically excited cable-stayed bridge are researched. The stiffer rubber and bigger lead core size is needed for cable -stayed bridge than general structures. The plastic behavior of lead core of LRB is important to reduce the seismic response of cable-stayed bridge. The performance of designed LRB is good for several historical earthquakes. As the dominant frequency of earthquake is low, the flexible LRB is needed.

17 Structural Dynamics & Vibration Control Lab., KAIST Thank you for your attention!! Acknowledgments This research is supported by the National Research Lab. Grant (No.: 2000-N-NL-01-C-251) in Korea.