E166: Polarized Positrons & Polarimetry K. Peter Schüler ILC: - why polarized positrons - e+ source options - undulator source scheme E166 - proof-of-principle.

Slides:



Advertisements
Similar presentations
POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
Advertisements

The E166 Experiment K. Peter Schüler e+ source options for the ILC undulator source scheme for ILC E166 – proof-of-principle demonstration of the undulator.
Simulations with ‘Realistic’ Photon Spectra Mike Jenkins Lancaster University and The Cockcroft Institute.
1 Electron Beam Polarimetry for EIC/eRHIC W. Lorenzon (Michigan) Introduction Polarimetry at HERA Lessons learned from HERA Polarimetry at EIC.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
K.T. McDonald DoE Review Aug. 10, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
EPAC June 2003 The EPAC June 2003 Questions 1. Clarify the Motivation for the Proposal. 2. How to ensure the e+ polarimeter works right away? 3. What is.
5 th Rencontres du Vietnam - Aug. 7, 2004 Polarized Positrons…E166 A.W.Weidemann 1 Introduction (What, who) Motivation (Why) Experiment and Polarimetry.
K. LaihemPrinceton meeting Princeton meeting Status Report Simulation studies E166 experiment Karim Laihem.
E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004.
K.T. McDonald DoE Review July 29, E-166 Experiment E-166 is a demonstration of undulator-based polarized positron production for linear colliders.
E166 Collaboration Meeting Princeton, May 2006 Analyzer Magnetic Analysis K. Peter Schüler General Overview Spin and Magnetization Field Distribution.
GEANT4 simulations for the Lund R 3 B prototype Douglas Di Julio Lund University, Lund, Sweden.
Left: The polarization of the undulator radiation as a function of energy. Right: Calculated positron longitudinal polarization as a function of energy.
NLC - The Next Linear Collider Project Sheppard/Pitthan June 26, 2015 Towards an Undulator Based NLC Positron Source Towards an Undulator Based NLC Positron.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
Undulator-Based Production of Polarized Positrons An experiment in the 50 GeV Beam in the SLAC FFTB E-166 Undulator-Based Production of Polarized Positrons.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) K.T. McDonald, J.C. Sheppard, Co-Spokespersons SLAC Experimental Program Advisory.
EPAC June 2003 Undulator-Based Production of Polarized Positrons A proposal for the 50 GeV Beam in the FFTB E-166 Undulator-Based Production of Polarized.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
HPS Test Run Setup Takashi Maruyama SLAC Heavy Photon Search Collaboration Meeting Thomas Jefferson National Accelerator Facility, May 26-27,
Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh). 1 Spectrum if all energy is captured in detector. Allows identification.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
Beijing, Feb 3 rd, % e+ Poalarization 1 Physics with an initial positron polarisation of ≈30% Sabine Riemann (DESY)
1 st October Linear Collider workshop The CLIC/ILC common work plan progress J. Clarke and L. Rinolfi.
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
1 Options for low energy spin manipulation Ken Moffeit, SLAC 2009 Linear Collider Workshop of the Americas 29 September to 3 October 2009 K. Moffeit, D.
EUROTeV WP4 Report Polarised Positron Source Jim Clarke, on behalf of the WP4 team DESY Zeuthen STFC (Daresbury and RAL) University of Durham University.
1 Overview of Polarimetry Outline of Talk Polarized Physics Machine-Detector Interface Issues Upstream Polarimeter Downstream Polarimeter Ken Moffeit,
Oct. 6, Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia.
Polarisation at Linear Colliders Achim Stahl Zeuthen 15.Oct.03.
Polarisation monitoring Sabine Riemann, Andreas Schälicke, Andriy Ushakov (DESY) Positron Source Group Meeting, October, 2009 University of Durham.
Spin Control and Transportation O. Adeyemi*, M. Beckmann**, V. Kovalenko*, L. Malysheva*, G. Moortgat-Pick*, S. Riemann**, A. Schälicke**, A. Ushakov**
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) The International Polarized Positron Production Collaboration K.T. McDonald, J.C.
Laser Based Polarized e + e + Source for ILC 8th ACFA Daegu 11-14/Jul/2005 Tsunehiko OMORI (KEK)
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
ILC/CLIC e + generation working group Jim Clarke, STFC Daresbury Laboratory and Louis Rinolfi, CERN.
Validation of EM Part of Geant4
Inclusive Measurements of inelastic electron/positron scattering on unpolarized H and D targets at Lara De Nardo for the HERMES COLLABORATION.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Update on ILC Production and Capturing Studies Wei Gai, Wanming Liu and Kwang-Je Kim ILC e+ Collaboration Meeting IHEP Beijing Jan 31 – Feb 2, 2007.
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
WG3a Sources Update Jim Clarke on behalf of WG3a GDE Meeting, Frascati, December 2005.
Undulator Based ILC positron source for TeV energy Wanming Liu Wei Gai ANL April 20, 2011.
Positron polarization at the ILC: RDR vs. SB2009 Sabine Riemann, DESY Zeuthen International Workshop on Linear Colliders 2010, Geneva October 25-29, 2010.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
Positron Source for Linear Collider Wanming Liu 2013 DOE Review.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy The Department.
LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 1 Polarimeter Studies for TESLA O General Considerations O.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
Dollan, Laihem, Lohse, Schälicke, Stahl 1 Monte Carlo based studies of polarized positrons source for the International Linear Collider (ILC)
Luminosity at  collider Marco Zanetti (MIT) 1. Intro,  colliders basics Luminosity at  colliders Sapphire simulation Alternative approaches Luminosity.
CsI(Tl) Calorimeter and status of the E166 experiment E166 experiment CsI ( Tl) calorimeter construction. Test beam results vs. Geant4 simulation Schedules.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
Update on e+ Source Modeling and Simulation
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
The Lund R3B prototype: In-beam proton tests and simulations
Polarized Electrons for Polarized Positrons
A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University,
Progress with Spin Tracking in GEANT4
ILC/CLIC e+ generation working group
E166 - LEPOL - Low Energy Positron Polarimetry for the ILC
Polarized Positrons at Jefferson Lab
ILC Baseline Design: Physics with Polarized Positrons
GEANT Simulations and Track Reconstruction
Presentation transcript:

E166: Polarized Positrons & Polarimetry K. Peter Schüler ILC: - why polarized positrons - e+ source options - undulator source scheme E166 - proof-of-principle demonstration of the undulator method - undulator basics - transmission polarimetry - G EANT 4 polarization upgrade results & conclusions E166: Polarized Positrons & Polarimetry K. Peter Schüler (DESY) - on behalf of the E166 Collaboration JPOS 09 at Jefferson Lab March 2009

ILC: why polarized positrons? 2 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler SLC as precursor of the ILC very successfully employed polarized electrons, but not polarized positrons. What does the ILC gain from polarized positrons? longitudinally polarized beams: can enhance or suppress processes!

why polarized positrons? 3 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler effective polarization in s-channel (e+e-  γ/Z) annihilation: positron polarization can significantly increase precision in measurement of A LR

4 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler why polarized positrons? Supersymmetry: Selectron Pair Production positron polarization is required for separation of RR from LR pairs

5 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler why polarized positrons? can effectively enhance or suppress processes improved signal/background ratio higher effective polarization and precision in A LR asymmetry unique understanding of non-standard couplings explore new physics (e.g. extra dim.) with transverse beam pol. G. Moortgat-Pick et al., Physics Reports 460 (2008) CERN-PH-TH , SLAC-PUB-11087, arXiv: hep-ph/

e + source options for the ILC 6 existing/proposed positron sources: ← ILC 3 Concepts: large amount of charge req‘d ! ‚conventional‘ laser Compton based undulator-based JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

undulator source 7 PRO: photoprod. in thin target 0.4 X 0 Ti-alloy  lower e+ beam emittance less energy deposition in target (1/5) and AMD (1/10) less neutron induced activation (1/16) no multiplexing & accumulation req‘d polarized positrons CON: need high-energy electron drive beam (coupled e+/e- operation) long undulator ( m) req‘d positron beam profile JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

undulator source scheme for ILC 8 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler undulator is chosen baseline scheme for the positron source (although initially at less than full length) expect initial e+ polarization of ~ 30% Compton based e+ source has alternative status

E166 – proof of principle demonstration of the undulator method 9 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

undulator basics 10 E166 ILC (RDR) electron beam energy (GeV) field (T) period (mm) K value photon energy  0 max (MeV) beam aperture (mm) active length (m) M (no. of periods) JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

undulator basics 11 E166 Photon SpectrumE166 Photon Polarization Spectrum:Angular Distribution:Polarization: first harmonic (dominating) expressions: E166 Photon Yield: = no. of photons per high-energy beam electron  0 max = 7.9 MeV JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

The E166 Experiment /2005  setup and checkout Oct  4 weeks of data taking JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

E166 experimental setup 13 C1 – C4: photon collimation A1, A2: aerogel detectors S1, S2: silicon detectors GCAL: Si/W-calorimeter DM: electron beam dump magnets T1: g  e+ prod. target (0.2 X 0 W) T2: e+  g reconv. target (0.5 X 0 W) P1: e+ flux monitor (Silicon) CsI: Cesium Iodide calorimeter SL: solenoid lens J: movable jaws 4 – 8 MeV < 8 MeV JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

E166 photo gallery 14 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

transmission polarimetry 15 1.Compton Transmission Polarimetry for Low-Energy Photons relies on spin dependence of Compton effect in magnetized iron: 2.Positron Polarimetry: (a) transfer e+ polarization to photon via brems/annihilation process (b) then infer e+ polarization from measured photon pol. as in method 1. JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

16 analyzer magnets: overview active volume Photon Analyzer: 50 mm dia. x 150 mm long Positron Analyzer: 50 mm dia. x 75 mm long P e ≈ 0.07 ΔP e /P e ~ 0.03 electron polarization of the iron: M = (B–B 0 )/  0  magnetization n = electron density μ B = Bohr magneton g‘ = magneto-mechanical factor JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

17 analyzer magnets CsI-Detector e+ Analyzer Pickup Coils e+ Analyzer  Analyzer JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

18 electron polarization of the iron  P e /P e ~ 2% JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler P e ~ 0.07

19 Simulations JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler GEANT4 upgrade for spin-dependent e/m processes: gammas: - gamma conversion - Compton scattering - photo-electric effect electrons & positrons: - multiple scattering - ionization - bremsstrahlung polarization tranfer -  Y e+/e- - e+/e- Y  polarimetry - Compton scattering - Bhabha scattering - Moller scattering - positron annihilation in flight e+/e- spectra at production target e+/e- polarization & analyzing power

20 photon asymmetries detector asymmetry  (%)  measured predicted S2 (silicon) 3.88 E 0.12 E A2 (aerogel) 3.31 E 0.06 E GCAL (Si/W-calo) 3.67 E 0.07 E reasonable agreement with simulation results based on theoretical undulator polarization spectrum and detector response functions but no detailed spectral shape analysis possible JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

21 positron measurements exp. asymmetry of ~1% expected in CsI large background from e- beam halo req‘s equal amount of undulator „on“ and „off“ statistics normalization to P1 detector avoids false asymmetries from flip-correlated beam shifts JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

energy deposition in CsI crystals 22 good signal/background separation in central crystal background from e- beam halo hitting the undulator undulator on/off measurements taken on alternating machine pulses for effective background subtraction undulator on: signal + background undulator off: background JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

23 positron asymmetries JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

24 positron asymmetries JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

results: beam polarization 25 = analyzing power from simulations = electron polarization of the iron JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

26 conclusions successful demonstration of the undulator method undulator functioned as predicted successful polarimetry of low-energy  and e+ confirmed expected γ  e+ spin-transfer mechanism measured high positron polarization with ~ 85% max. JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

27 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler long paper (66 pages) about to be submitted to NIM PRL 100, (2008), G. Alexander et al.: published results

28 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler why polarized positrons? Transverse Beam Polarization: Gravity in Extra Dimensions: expect significant asymmetric deviations from SM in the azimuthal distributions T. G. Rizzo, JHEP 0302 (2003) 008 [arXiv:hep-ph/ ]; JHEP 0308 (2003) 051 [arXiv:hep-ph/ ].

29 conventional positron source (as used for SLC at SLAC) PRO: established technology (although not at req‘d level) CON: pushing technical limits of target materials; req‘s multiple targets and beamlines; very high activation levels no polarization option thick W-Re target: strong multiple scattering, less efficient e+ capture JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

30 spin and magnetization g‘ = magneto-mechanical factor: obtained from Einstein - de Haas type experiments, related to gyromagnetic ratio: γ = (g‘/2) ∙ (e/m) the principle … and its ultimate implementation (Scott 1962) g‘ = ± for pure iron i.e. orbital effects contribute about 4% Note: g‘ = 2  M s / M = 1 (pure spin magnetization) γ = e/m g‘ = 1  M s / M = 0 (pure orbit magnetization) γ = ½ (e/m) JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

31 field distribution modeling (Vector Fields OPERA-2d) R = 0 mm B z (T) Z (mm) longitudinal field distribution: B z (R,Z) field drops gradually towards the ends: L eff / L < 1 center end 20 5 JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

32 field distribution in 2d (Vector Fields OPERA-2d) longitudinal field distribution: B z (R,Z) (shown for one quadrant) R (mm) Z (mm) JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

33 flux measurements: measure voltage transients in pickup coils upon current reversals Positron Analyzer (-60  +60 amps) voltage transient JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler

34 flux and field measurements: results Note: polarimetry was always done at full saturation over the central region (±60A) Z = 0 (center) JPOS 09 at Jefferson Lab March 2009 E166: Polarized Positrons & Polarimetry K. Peter Schüler