Spectral Breaks in Flare HXR Spectra A Test of Thick-Target Nonuniform Ionization as an Explanation Yang Su NASA,CUA,PMO Gordon D. Holman.

Slides:



Advertisements
Similar presentations
Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
Advertisements

RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
RHESSI Studies of Solar Flare Hard X-Ray Polarization Mark L. McConnell 1, David M. Smith 2, A. Gordon Emslie 4, Martin Fivian 3, Gordon J. Hurford 3,
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Wei Liu 1, Vahé Petrosian 2, Brian Dennis 1, & Gordon Holman 1 1 NASA Goddard Space Flight Center 2 Stanford University Conjugate Hard X-ray Footpoints.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Solar Physics with X-ray Observations Gordon D. Holman Solar Physics Laboratory (Code 671) NASA Goddard Space Flight Center RHESSI Fermi Gamma-ray Burst.
Cristina Chifor SESI Student Intern 2005 Solar Physics, Code 612 NASA/Goddard Space Flight Center Mentors: Dr. Ken Phillips & Dr. Brian Dennis FE AND FE/NI.
Solar flares and accelerated particles
Page 1 Cristina Chifor (a) Ken Phillips (b), Brian Dennis (c) a) DAMTP, University of Cambridge, UK b) Mullard Space Science Lab, UK c) NASA/GSFC, Maryland,
M1.0 flare of 22 Oct 2002 RHESSI observations of the M 1.0 solar flare on 22 October 2002 A. Berlicki 1,2, B. Schmieder 1, N. Vilmer 1, G. Aulanier 1 1)
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Super-Hot Thermal Plasmas in Solar Flares
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
+ Hard X-Ray Footpoint Motion and Progressive Hardening in Solar Flares Margot Robinson Mentor: Dr. Angela DesJardins MSU Solar Physics Summer REU, 2010.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Working Group 2 - Ion acceleration and interactions.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
Hard X-ray footpoint statistics: spectral indices, fluxes, and positions Pascal Saint-Hilaire 1, Marina Battaglia 2, Jana Kasparova 3, Astrid Veronig 4,
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB) ABSTRACT: We present spectral fits for RHESSI and GOES solar.
3 November 2003 event HXR/Gamma-ray and radio observations Rhessi_workshop.
Search for X-ray emission from coronal electron beams associated with type III radio bursts Pascal Saint-Hilaire, Säm Krucker, Robert P. Lin Space Sciences.
SPD May 25, 2005 RHESSI soft X-ray imaging spectroscopy H. Hudson & A. Caspi (SSL/UCB) And B. Dennis & K. Phillips (NASA/GSFC.
RHESSI Studies of Solar Flare Hard X-Ray Polarization Mark L. McConnell 1, David M. Smith 2, A. Gordon Emslie 4, Martin Fivian 3, Gordon J. Hurford 3,
It is possible that reconnection can occur multiple times along CS Plasmoids form as magnetic ‘islands’ between X-points Due to density and.
1 Statistical determination of chromospheric density structure using RHESSI flares Pascal Saint-Hilaire Space Sciences Lab, UC Berkeley RHESSI Workshop.
Center to Limb Variation of Hard X-Ray Spectra from RHESSI J.McTiernan (SSL/UCB) ABSTRACT: We use the RHESSI flare database to measure the center to limb.
Center to Limb Variation of Hard X-Ray Spectra from RHESSI J. McTiernan SSL/UCB.
GLOBAL ENERGETICS OF FLARES Gordon Emslie (for a large group of people)
Diagnostics and constraints for relativistic electron and ion acceleration in solar flares N. Vilmer LESIA –Observatoire de Paris Ascona_June
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
RHESSI/GOES Xray Analysis using Multitemperature plus Power law Spectra. J.McTiernan (SSL/UCB)
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Energy-height relation for hard X-ray footpoint sources observed by RHESSI. TOMASZ MROZEK ASTRONOMICAL INSTITUTE, WROCŁAW UNIVERSITY.
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H.,
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
Regularized Mean and Accelerated Electron Flux Spectra in Solar Flares Eduard P. Kontar University of Glasgow Michele Piana, Anna Maria Massone (INFM,
Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.
Energetic electrons acceleration: combined radio and X-ray diagnostics
Hard X-ray and radio observations of the 3 June 2007 flare Nicole Vilmer Meriem Alaoui Abdallaoui Solar Activity during the Onset of Solar Cycle
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Regularized Mean and Accelerated Electron Flux Spectra in Solar Flares Eduard P. Kontar University of Glasgow Michele Piana, Anna Maria Massone (INFM,
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
STUDY OF A DENSE, CORONAL THICK TARGET SOURCE WITH THE MICROWAVE DATA AND 3D MODELING Gregory Fleishman, Yan Xu, Gelu Nita, & Dale Gary 03/12/2015.
Cycle 24 Meeting, Napa December 2008 Ryan Milligan NASA/GSFC Microflare Heating From RHESSI and Hinode Observations Ryan Milligan NASA-GSFC.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Ion Acceleration in Solar Flares Determined by Solar Neutron Observations 2013 AGU Meeting of the Cancun, Mexico 2013/05/15 Kyoko Watanabe ISAS/JAXA,
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
1 Wei Liu, Tongjiang Wang, Brian Dennis, & Gordon Holman NASA Goddard Space Flight Center Evidence of Magnetic Reconnection & Existence of Current Sheet.
Statistical Properties of Super-Hot Solar Flares Amir Caspi †1*, Säm Krucker 2,3, Robert P. Lin 2,4,5 †
Physics of Solar Flares
Marina Battaglia, FHNW Säm Krucker, FHNW/UC Berkeley
Two Years of NoRH and RHESSI Observations: What Have We Learned
RHESSI Spectral Analysis of the 1N/M1.9 flare of 20 October 2003
The spectral evolution of impulsive solar X-ray flares
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Presentation transcript:

Spectral Breaks in Flare HXR Spectra A Test of Thick-Target Nonuniform Ionization as an Explanation Yang Su NASA,CUA,PMO Gordon D. Holman NASA Brian R. Dennis NASA Napa, CA Dec.10.08

 1/2 Nonuniform Ionization  1/3-1/2: Introduction  2/3-1/2: Models  3/3-1/2: RHESSI Observation  2/2 Time evolution and Imaging spectroscopy  Flux of one source from Clean, Pixon  time evolution of spectral breaks  Image Spectroscopy, spectra from footpoints (spectral breaks)

 Solar flare HXR spectra  single / double power-law  time evolution (Dulk et al. 1992; Lin & Schwartz 1987)  break energy: typically between ~50 and 100 keV  Spectral breaks is important  acceleration mechanisms  electron propagation and energy losses  relationships between flare X-ray sources, radio sources, and particles 1/3-1/2 Introduction

 For the count and photon spectra  Instrumental effects, such as pulse pile-up (Smith et al. 2002)  Additional components, such as:  Albedo (Kontar et al. 2006; Kontar & Brown 2006; Zhang & Huang 2004)  emission from thermal plasma 1/3-1/2 Introduction

 For the accelerated electrons  Non-power-law electron distribution from the acceleration process, e.g.  a double power-law electron distribution  a low-energy cutoff (Gan et al. 2002; Sui et al. 2007)  a high-energy cutoff (Holman 2003)  An anisotropic electron pitch-angle distribution (Petrosian 1973; Massone et al. 2004)  Beam-plasma instability (Holman et al. 1982; Melrose 1990)  Return current energy losses (Knight & Sturrock 1977; Zharkova & Gordovskyy 2006)  Nonuniform target ionization (Brown 1973; Brown et al. 1998; Kontar et al. 2002) 1/3-1/2 Introduction

 Aims  Spectrum from nonuniform ionization thick-target with full cross section  Can nonuniform ionization model explain the spectral breaks in observations?  And how many? 1/3-1/2 Introduction

 Nonuniform target ionization  Electron energy losses lower in un-ionized or partially ionized plasma than in fully ionized plasma  Brown et al. 1998, x(N) is the ionization level 2/3-1/2 Model effective column density M

 step-function  Brown 1973, Kontar et al. (2002)  the atmospheric ionization  the Kramers approximation of the cross section, q=1  linear-function  the atmospheric ionization  When N 0 = N 1 =N *, step function  full relativistic cross section of Bethe and Heitler 2/3-1/2 Model

step linear E * = E1= 30 keV E e =60 keV stops here (M 0 ) N N1N1 N0N0 2/3-1/2 Model

δ=4.5 (best fit γ=3) (Brown 1973) 2/3-1/2 Model

Relation between N and E Photon flux from linear-function model F c =10 35 electrons s -1 ; E c = 1 keV (=0 for N 1 =N 0 ) 2/3-1/2 Model

Photon spectra and photon spectral index γ from the four models with δ=4 Arrows: upward knee, downward knee and γ(ε) for fully ionized model (not constant)

Spectra from linear-function model with fixed E 1 and increasing E 0 2/3-1/2 Model

 RHESSI flare sample  2002 February December 31. Non-solar and particle events were excluded.  keV count rate > 300 counts s -1 detector -1. the keV count rate to be at least 3σ above the background count rate. (F 50 )  Radial distance > 927” from disk center (>~ 75 degrees longitude at the solar equator)  This minimizes the impact of albedo on the X-ray spectrum (Kontar et al. 2006)  Detector corrected count rate live times> 90%. This gave a final sample size of 20 flares.  This minimizes the impact of pulse pile-up (Smith et al. 2002; Ka·sparov¶a et al. 2007). 3/3-1/2 RHESSI Observation

 1/3 keV bins from 3 to 15 keV and 1 keV bins above 15 keV  All RHESSI front detectors  no 2 and 7 -- poor energy resolution  no 5 for the 30 Nov 2003 flare -- unusually low livetime  no 8 for some flares -- interference from RHESSI's communication antenna  One spin period, mostly at the HXR peak time  Full RHESSI response matrix, instrumental systematic uncertainty: zero (Sui et al. 2007)  Isothermal + three spectral lines+ nonthermal models  Two steps for fit, first fit above 6 keV, then fix thermal comp. then fit above 15 keV  the ion line complex at ~6.7 keV  the ion/nickel line complex at ~8 keV (Phillips 2004)  and a nonsolar line at ~10.5 keV  CLEAN Images : keV for same time interval 3/3-1/2 RHESSI Observation

Examples for poor fit (left) and good fit (right)

3/3-1/2 RHESSI Observation fit results from: Bpow fit F_ion fit (Kramers) N_ion fit (full cs)

∆γ VS δ ∆γ from bpow fit δ from step-function fit 3/3-1/2 RHESSI Observation

 full cs and Kramers (up to 36% on flux and 6.8% on γ)  step and linear  upper limit on ∆γ of spectra from nonuniform ionization model  In 20 F 50 flares (around peak)  5 with single, 15 with broken  10 out of 15 F 50 flares can not be explained by nonuniform ionization alone  All the 5 that can be explained by non-ion have DF sources -1/2 Summary

 Aims:  spectral breaks VS time  How HXR sources change when the spectra change from single to b-pow  spectrum from each footpoint  relation between spectral breaks for footpoints and total spectrum 2/2 Time evolution and Imaging spectroscopy

Flux from single source of one image: flare id: , 22:32 energy range: keV 2/2 Time evolution and Imaging spectroscopy

pixon D2-D8, , , pixon D2-D8, including background model, Clean D2-D8, different iterations, 300, stop if, Normal, no stop MM=Media Mode 50: : : : : : : : : : : : Clean D2-D8, 4.06s 100: : : : : : /2 Time evolution and Imaging spectroscopy

keV Pixon: center , , circle:9, Flux Area Centroid (X,Y) Peak (X,Y) St Dev (X,Y) Peak Clean D2-D9, different iterations 300, stop if, MM: Normal, MM 50: : : : : : : : : : /2 Time evolution and Imaging spectroscopy

?/? The highest HXR source???

To be continued ?/? Direct observation of reconnection???