10.1 Chapter 10 Error Detection and Correction.. 10.2 Data can be corrupted during transmission. Some applications require that errors be detected and.

Slides:



Advertisements
Similar presentations
10. Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Advertisements

Noise, Information Theory, and Entropy (cont.) CS414 – Spring 2007 By Karrie Karahalios, Roger Cheng, Brian Bailey.
Cyclic Code.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
NETWORKING CONCEPTS. ERROR DETECTION Error occures when a bit is altered between transmission& reception ie. Binary 1 is transmitted but received is binary.
Chapter 10 Error Detection and Correction
PART III DATA LINK LAYER. Position of the Data-Link Layer.
ECOM 4314 Data Communications Fall September, 2010.
Transmission Errors1 Error Detection and Correction.
Error detection and correction
Chapter 2 : Direct Link Networks (Continued). So far... Modulation and Encoding Link layer protocols Error Detection -- Parity Check.
Error Detection and Correction
Error Detection and Correction Rizwan Rehman Centre for Computer Studies Dibrugarh University.
Chapter 10 Error Detection and Correction
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 PART III: DATA LINK LAYER ERROR DETECTION AND CORRECTION 7.1 Chapter 10.
Transmission Errors Error Detection and Correction
Copyright © NDSL, Chang Gung University. Permission required for reproduction or display. Chapter 10 Error Detection and Correction 長庚大學資訊工程學系 陳仁暉 副教授.
PART III DATA LINK LAYER. Position of the Data-Link Layer.
British Computer Society
Error Coding Transmission process may introduce errors into a message.  Single bit errors versus burst errors Detection:  Requires a convention that.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Data Link Layer: Error Detection and Correction
Lecture 6: Framing and Error Detection-Data Link Layer Functions
Chapter 10. Error Detection and Correction
Data Communications, Kwangwoon University10-1 Part 3 Data Link Layer Chapter 10 Error Detection and Correction Chapter 11 Data Link Control Chapter 12.
Data and Computer Communications by William Stallings Eighth Edition Digital Data Communications Techniques Digital Data Communications Techniques Click.
Cyclic Redundancy Check CRC Chapter CYCLIC CODES Cyclic codes are special linear block codes with one extra property. In a cyclic code, if a codeword.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Data Link Layer PART III.
Error Detection and Correction
COMPUTER NETWORKS Ms. Mrinmoyee Mukherjee Assistant Professor St. Francis Institute of Technology, Mount Poinsur, S.V.P Road, Borivli (west), Mumbai
Computer Networks Lecture 2: Data Link Based on slides from D. Choffnes Northeastern U. and P. Gill from StonyBrook University Revised Autumn 2015 by S.
Error Detection and Correction
Computer Communication & Networks Lecture 9 Datalink Layer: Error Detection Waleed Ejaz
Lecture Focus: Data Communications and Networking  Data Link Layer  Error Control Lecture 19 CSCS 311.
CHAPTER 3: DATA LINK CONTROL Flow control, Error detection – two dimensional parity checks, Internet checksum, CRC, Error control, Transmission efficiency.
1 © Unitec New Zealand CRC calculation and Hammings code.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Block Coding Messages are made up of k bits. Transmitted packets have n bits, n > k: k-data bits and r-redundant bits. n = k + r.
1 Kyung Hee University Position of the data-link layer.
Error Detection. Data can be corrupted during transmission. Some applications require that errors be detected and corrected. An error-detecting code can.
Chapter 10 Error Detection And Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Data Link Layer. Data Link Layer Topics to Cover Error Detection and Correction Data Link Control and Protocols Multiple Access Local Area Networks Wireless.
Error Detection and Correction
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 PART III: DATA LINK LAYER ERROR DETECTION AND CORRECTION 7.1 Chapter 10.
Data Communications and Networking
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Data Link Layer PART III.
10.1 UNIT - IV Error Detection and Correction Data can be corrupted during transmission. Some applications require that errors be detected and corrected.
Hamming Distance & Hamming Code
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Part III: Data Link Layer Error Detection and Correction
Data Link Layer 1. 2 Single-bit error 3 Multiple-bit error 4.
ERROR DETECTION AND CORRECTION Chapter 8 Data Communications & Networking ERROR DETECTION AND CORRECTION Chapter 8 First Semester 2007/2008.
Error Detection and Correction
Subject Name: COMPUTER NETWORKS-1
DATA COMMUNICATION AND NETWORKINGS
Advanced Computer Networks
Chapter 10 Error Detection And Correction
Error Detection Bit Error Rate(BER): It is the ratio of number Ne of errors appearing over a certain time interval t to the number Nt of 1 and 0 pulses.
Chapter 10 Error Detection And Correction
Welcome to the presentation. Linear Block Codes Almost all block codes used today belong to a subset called linear block codes. The exclusive OR of two.
Position of the data-link layer
Error Detection and Correction
Error Detection and Correction
Error Detection and Correction
Types of Errors Data transmission suffers unpredictable changes because of interference The interference can change the shape of the signal Single-bit.
Chapter 10 Error Detection and Correction
Presentation transcript:

10.1 Chapter 10 Error Detection and Correction.

10.2 Data can be corrupted during transmission. Some applications require that errors be detected and corrected. Note

INTRODUCTION Let us first discuss some issues related, directly or indirectly, to error detection and correction. Types of Errors Redundancy Detection Versus Correction Forward Error Correction Versus Retransmission Coding Modular Arithmetic Topics discussed in this section:

10.4 In a single-bit error, only 1 bit in the data unit has changed. Note

10.5 Figure 10.1 Single-bit error

10.6 A burst error means that 2 or more bits in the data unit have changed. Note

10.7 Figure 10.2 Burst error of length 8

10.8 To detect or correct errors, we need to send extra (redundant) bits with data. Note

10.9 Figure 10.3 The structure of encoder and decoder

10.10 In modulo-N arithmetic, we use only the integers in the range 0 to N −1, inclusive. Note

10.11 Figure 10.4 XORing of two single bits or two words

BLOCK CODING In block coding, we divide our message into blocks, each of k bits, called datawords. We add r redundant bits to each block to make the length n = k + r. The resulting n-bit blocks are called codewords. Error Detection Error Correction Hamming Distance Minimum Hamming Distance Topics discussed in this section:

10.13 Figure 10.5 Datawords and codewords in block coding

10.14 The 4B/5B block coding is a good example of this type of coding. In this coding scheme, k = 4 and n = 5. As we saw, we have 2 k = 16 datawords and 2 n = 32 codewords. We saw that 16 out of 32 codewords are used for message transfer and the rest are either used for other purposes or unused. Example 10.1

10.15 Figure 10.6 Process of error detection in block coding

10.16 Let us assume that k = 2 and n = 3. Table 10.1 shows the list of datawords and codewords. Later, we will see how to derive a codeword from a dataword. Assume the sender encodes the dataword 01 as 011 and sends it to the receiver. Consider the following cases: 1. The receiver receives 011. It is a valid codeword. The receiver extracts the dataword 01 from it. Example 10.2

The codeword is corrupted during transmission, and 111 is received. This is not a valid codeword and is discarded. 3. The codeword is corrupted during transmission, and 000 is received. This is a valid codeword. The receiver incorrectly extracts the dataword 00. Two corrupted bits have made the error undetectable. Example 10.2 (continued)

10.18 Table 10.1 A code for error detection (Example 10.2)

10.19 An error-detecting code can detect only the types of errors for which it is designed; other types of errors may remain undetected. Note

10.20 Figure 10.7 Structure of encoder and decoder in error correction

10.21 The Hamming distance between two words is the number of differences between corresponding bits. Note

10.22 Let us find the Hamming distance between two pairs of words. 1. The Hamming distance d(000, 011) is 2 because Example The Hamming distance d(10101, 11110) is 3 because

10.23 The minimum Hamming distance is the smallest Hamming distance between all possible pairs in a set of words. Note

10.24 Find the minimum Hamming distance of the coding scheme in Table Solution We first find all Hamming distances. Example 10.5 The d min in this case is 2.

10.25 Find the minimum Hamming distance of the coding scheme in Table Solution We first find all the Hamming distances. The d min in this case is 3. Example 10.6

10.26 A simple parity-check code can detect an odd number of errors. Note

10.27 Figure Two-dimensional parity-check code

10.28 Figure Two-dimensional parity-check code

10.29 Figure Two-dimensional parity-check code

CYCLIC CODES Cyclic codes are special linear block codes with one extra property. In a cyclic code, if a codeword is cyclically shifted (rotated), the result is another codeword. Cyclic Redundancy Check Hardware Implementation Polynomials Cyclic Code Analysis Topics discussed in this section:

10.31 CRC Transmit polynomial P(x) that is evenly divisible by C(x), and receive polynomial P(x) + E(x); E(x)=0 implies no errors. Recipient divides (P(x) + E(x)) by C(x); the remainder will be zero in only two cases: E(x) was zero (i.e. there was no error), or E(x) is exactly divisible by C(x). Choose C(x) to make second case extremely rare.

10.32 Example Make all legal messages divisible by 3 If you want to send 10 First multiply by 4 to get 40 Now add 2 to make it divisible by 3 = 42 When the data is received.. Divide by 3, if there is no remainder there is no error If no error, divide by 4 to get sent message If we receive 43, 44, 41, 40, then error

10.33 Figure CRC encoder and decoder

10.34 Figure Division in CRC encoder

10.35 Figure Division in the CRC decoder for two cases

10.36 The divisor in a cyclic code is normally called the generator polynomial or simply the generator. Note