A summary of the energy systems and how they relate to sport and training – Year 10 HPE © Cengage Learning Australia 2011.

Slides:



Advertisements
Similar presentations
Energy systems Energy for muscular contraction during exercise comes from the splitting of a high energy compound (ATP). 3 systems – adenosine triphospate.
Advertisements

Energy Systems ©Subject Support
Phosphocreatine energy System recap exercise.
Energy in the human body come from the breakdown of nutrients like carbohydrates, proteins and fats Food = Energy (ATP) The end result of this breakdown.
In order to participate in activity we are required to move. How does this movement occur? This movement is the result of muscle contractions. For these.
KEY KNOWLEDGEKEY SKILLS  The three energy systems (ATP-PC, anaerobic glycolysis, aerobic systems) including how they work together to produce ATP – both.
INTERPLAY OF ENERGY SYSTEMS
Aerobic and Anaerobic Energy Systems
Achievement Standard 2.3 Energy systems. ENERGY SYSTEMS Energy for muscular activity and other biological work comes from the breakdown of adenosine triphosphate.
Aerobic and Anaerobic Pathways- An Introduction to Energy Systems
Energy systems Learning outcomes: All are able to demonstrate understanding of the energy sources required for ATP resynthesis All are able to describe.
Chapter 5 1 Energy for Muscular Activity. Where do we get Energy for our working muscles?
Energy systems. And how they work. PHYSIOLOGICAL REQUIREMENTS OF PHYSICAL ACTIVITY Foods Fuel and Energy Systems.
ATP ENERGY PRODUCTION.
Energy Systems What are energy systems for? What is ATP? ATP is stored in the………….
Energy Production for Activity
(1) ATP ATP is the only form of usable energy in the body.
Unit 1 P7 Know the different types of energy systems.
Biathlon. To sustain a fast running and swimming speed over prolonged periods of time as well as transition from one to the other. The key physiological.
KEY KNOWLEDGEKEY SKILLS  The characteristics of the two anaerobic (without oxygen) and aerobic (with oxygen) energy pathways.  The energy pathways used.
Energy Systems. Introduction Your body needs energy for basic body functions an activity during your whole life. The interaction between muscles and bones.
KEY KNOWLEDGEKEY SKILLS  The characteristics of the two anaerobic (without oxygen) and aerobic (with oxygen) energy pathways.  The energy pathways used.
Physiology of Fitness Energy systems and their role in sport and exercise.
ENERGY SYSTEMS YEAR 13 Physical Education. By the end of today you will Be able to:  Understand and explain how ATP is used to create energy  Explain.
Energy Systems for Exercise Energy Sources From Food: – CHO = 4 kcal – Fat = 9 kcal – Protein = 4 kcal For Exercise: ATP  ADP + P + energy (for muscle.
ATP ENERGY PRODUCTION. Energy The body needs a constant supply of energy to perform every day tasks such as respiration and digestion. Energy is the capacity.
Energy Systems. Muscles require energy to work The energy required by muscles comes from a chemical compound called adenosine triophosphate (ATP) ATP.
Energy Systems and Muscle Fibre Types. In groups of 2 answer the following… Why do we eat? Why do we eat? Answer- Nutrients and Energy needed for daily.
Energy systems Learning outcomes:
Energy Systems and Muscle Fibre Types. Three Key Energy Nutrients The food that we eat is broken down into three nutrients during digestion: Protein Fats.
INTRO TO ENERGY SYSTEMS. 4 MAJOR STEPS TO PRODUCE ENERGY STEP 1 – Breakdown a fuel STEP 2 – Produce ATP via energy systems STEP 3 - Breakdown ATP to release.
WHAT IS ATP ? Carbohydrates, Fats and Protein – contain energy, however we can’t use it directly. These nutrients are used to form a chemical compound.
Energy Systems. Fuel for Muscle Contraction Carbohydrates, fats and protein are broken down to form an energy rich molecule called Adenosine Triphosphate.
EDU2EXP Exercise & Performance 1 Energy Systems. EDU2EXP Exercise & Performance 2 Energy systems These are the three energy systems. 1. ATP-PC Energy.
Energy Systems Storage of Food Fuels in the Body.
KEY KNOWLEDGEKEY SKILLS  The characteristics of the two anaerobic (without oxygen) and aerobic (with oxygen) energy pathways.  The energy pathways used.
Human Physiology in the Development of Performance D Anaerobic Energy systems.
ENERGY SYSTEMS.
The human body is made to move in many ways Quick and powerful Graceful & coordinated Sustained for many hours Quick movements-lasts a few seconds Reduced.
 I will be able to explain how my body converts food into a usable form of energy for my cells.
Pages  Muscle fiber contraction is “all or none” ◦ There is no “in-between” contraction  Not all fibers may be stimulated at one time  Different.
* How the body uses nutrients, fat, carbohydrates, and proteins, to supply the body with the needed energy to perform. * Nutrients are converted to energy.
Energy Systems All movement requires energy. The methods by which the body generates energy are determined by the intensity and duration of the activity.
Energy systems..
Chapter 5 Aerobic and anaerobic pathways- an introduction to energy systems VCE Physical Education - Unit 3.
Sources of Energy for Exercise Kevin Browne The human body is made to move in many ways: Quick and powerful Graceful & coordinated Sustained for many.
ATP: ENERGY PRODUCTION ATP. Energy The body needs a constant supply of energy to perform every day tasks such as respiration and digestion. Energy is.
VCE PE Exam Preparation 2.
 I will be able to explain how my body converts food into a usable form of energy for my cells and thus allows for movement.
Aerobic and anaerobic pathways – an introduction to the energy systems Text Reference 1.Nelson Physical Education VCE Units 1&2 – Chapter 3.
Comparing the three energy systems 1) ATP-PC within the body's muscle mass there are between millimoles of ATP and PC. Which provide 15 – 20 kilojoules.
Section A: Exercise and Sport Physiology 3. ATP resynthesis.
 You are going to take notes on the following principles of training.  YOU will decide what is important and what is not.
Chapter 5 Foods, fuels and energy systems VCE Physical Education - Unit 3 Text Sources 1.Nelson Physical Education VCE Units 3&4: 5 th Edition – Malpeli,
Energy systems. Research task ●In groups of 3 you are to each research the 3 different energy systems ○Group member 1 is to research Anaerobic glycolysis.
Energy Systems for Exercise. The human body is made to move in many ways: Quick and powerful Graceful & coordinated Sustained for many hours And is dependent.
TRIATHLON NEW ZEALAND – TRI SCHOOLS
Food fuels & the three energy systems
(1) ATP ATP is the only form of usable energy in the body.
Exercise and the Body.
Exercise and the Body.
ENERGY SYSTEMS Week 10.
Nutrient Overview Nutrients 6 essential nutrients
Factors Affecting Performance
PSE 4U Section 5 Energy Systems
Anaerobic Glycolysis System
Energy systems and their role in sport and exercise
To understand and be able to explain the role of the 3 energy systems.
Energy systems..
THREE ENERGY SYSTEMS.
Presentation transcript:

A summary of the energy systems and how they relate to sport and training – Year 10 HPE © Cengage Learning Australia 2011

Predominant Energy Pathways ATP-CP Energy System (0-10 seconds) Anaerobic Energy System (up to 2-3 minutes) Aerobic Energy System (2 minutes +)

Carbohydrates, fats and proteins are the only food fuels that produce energy Phosphocreatine (PC) is a chemical fuel source Food Fuels Carbohydrates are our preferred exercise fuel either as blood glucose or muscle glycogen (2/3) and liver glycogen (1/3). They are: easy to access quick to breakdown (either with or without oxygen) plentiful (stored in large amounts) © Cengage Learning Australia 2011

ATP = energy, and we only have a small amount stored at muscles (only enough for a few movements) The three energy systems all work together (known as INTERPLAY) to rebuild ATP and keep us going. A-P-P-P ↔ A-P-P & P We have two anaerobic energy systems: ATP-PC – also known as the phosphogen or phosphocreatine or creatine phosphate system anaerobic glycolysis – also known as the lactic acid or lactacid system as well as one aerobic energy system: Aerobic – also known as aerobic glycolysis or oxygen system © Cengage Learning Australia 2011

Systems and fitness components © Cengage Learning Australia 2011

Does not require oxygen to liberate energy (anaerobic) The ATP–PC system provides the most rapidly available source of ATP for energy because it depends on simple and short chemical reactions and the ready availability of PC at muscles (PC being broken down to P + C). A limited amount of PC is stored at the muscles (about 10 seconds worth at maximal intensity), with larger muscles capable of storing slightly more PC than this (12 to 14 seconds at maximal intensity). There is approximately four times as much PC stored at muscles as there is ATP. Once phosphocreatine has been depleted at the muscle, ATP must be resynthesised from another substance, typically glycogen, which is stored at the muscles and the liver, via anaerobic glycolysis using the lactic acid system. Summary of the ATP–PC energy system © Cengage Learning Australia 2011

The lactic acid system is also anaerobic (doesn’t require oxygen to liberate energy) but involves more complicated and longer chemical reactions than the ATP-PC system to release energy. It supplies energy from the start of intense exercise and peak power from this system is usually reached between five and fifteen seconds, it will continue to contribute to ATP production until it fatigues (two to three minutes). It produces lactic acid, which can be broken down to glycogen to provide further energy. It supplies ATP at a slower rate than the phosphagen system. It provides energy for longer during submaximal activities when PC is depleted and lactic acid accumulation is slower. This provides a stopgap until sufficient oxygen is transported to working muscles for the aerobic system to become the major energy contributor. It provides twice as much energy for ATP resynthesis as the ATP-PC system. Summary of the anaerobic glycolysis energy system © Cengage Learning Australia 2011

The aerobic system is the slowest system to contribute towards ATP resynthesis due to the complex nature of its chemical reactions. It is capable of producing the most energy in comparison to the other two energy systems – between 30 to 40 times. It preferentially breaks down carbohydrates rather than fats to release energy. It provides 50 times as much ATP as the ATP-PC and lactic acid systems combined. It contributes significant amounts of energy during high-intensity/maximal activities lasting one to two minutes. The aerobic system is activated at the start of intense exercise, peak power from this system is usually reached between one and two minutes and will continue to be the major ATP contributor as the lactic acid system decreases its contribution. Summary of the aerobic energy system © Cengage Learning Australia 2011