1 Accretion onto Stars with Complex Fields and Outflows from the Disk-Magnetosphere Boundary Marina Romanova Cornell University May 18, 2010 Min Long (University.

Slides:



Advertisements
Similar presentations
Helical MagnetoRotational Instability and Issues in Astrophysical Jets Jeremy Goodman 1,3 Hantao Ji 2,3 Wei Liu 2,3 CMSO General Meeting 5-7 October 2005.
Advertisements

Global Simulations of Astrophysical Jets in Poynting Flux Dominated Regime Hui Li S. Colgate, J. Finn, G. Lapenta, S. Li Engine; Injection; Collimation;
Proposed Study of Dynamo Activity Associated with Astrophysical Jets Carl Sovinec, Univ. of WI, Engineering Physics study suggested by Stirling Colgate.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
Episodic magnetic jets as the central engine of GRBs Feng Yuan With: Bing Zhang.
Angular momentum evolution of low-mass stars The critical role of the magnetic field Jérôme Bouvier.
Pulsars Basic Properties. Supernova Explosion => Neutron Stars part of angular momentum carried away by shell field lines frozen into solar plasma (surface.
Neutron Stars and Black Holes
Physics of Relativistic Jets Yuri Lyubarsky Ben-Gurion University Beer-Sheva, Israel.
General Relativistic MHD Simulations of Black Hole Accretion Disks John F. Hawley University of Virginia Presented at the conference on Ultra-relativistic.
Simulation of Flux Emergence from the Convection Zone Fang Fang 1, Ward Manchester IV 1, William Abbett 2 and Bart van der Holst 1 1 Department of Atmospheric,
Fred Adams, Univ. Michigan Extreme Solar Systems II Jackson, Wyoming, September 2011.
System of Equations which leads to MRI: This system is linearized about an initial state where the fluid is in Keplerian rotation and B is vertical. The.
Observationally-Inspired Simulations of the Disk-Jet Interaction in GRS David Rothstein Cornell University with assistance from Richard Lovelace.
How to Form Ultrarelativistic Jets Speaker: Jonathan C. McKinney, Stanford Oct 10, 2007 Chandra Symposium 2007.
Accretion-ejection and magnetic star-disk interaction: a numerical perspective Claudio Zanni Laboratoire d’Astrophysique de Grenoble 5 th JETSET School.
The formation of stars and planets Day 4, Topic 1: Magnetospheric accretion jets and outflows Lecture by: C.P. Dullemond.
Phy Spring20051 Rp-process Nuclosynthesis in Type I X-ray Bursts A.M. Amthor Church of Christ, Kingdom of Heaven National Superconducting Cyclotron.
Stellar Magnetic Fields and Signatures of Heating Jeffrey Linsky JILA, University of Colorado and National Institute of Standards and Technology (NIST)
ADIOS Revisited Mitch Begelman JILA, University of Colorado ADIOS Revis it ed.
Processes in Protoplanetary Disks
1 Hantao Ji Princeton Plasma Physics Laboratory Experimentalist Laboratory astrophysics –Reconnection, angular momentum transport, dynamo effect… –Center.
Spin angular momentum evolution of the long-period Algols Dervişoğlu, A.; Tout, Christopher A.; Ibanoğlu, C. arXiv:
Transitional Millisecond pulsars as accretion probes
Radiation Hydrodynamic simulations of super-Eddington Accretion Flows super-Eddington Accretion Flows Radiation Hydrodynamic simulations of super-Eddington.
Magnetic mapping of solar-type stars Pascal Petit figure: © M. Jardine.
Relativistic Outflow Formation by Magnetic Field around Rapidly Rotating Black Hole Shinji Koide ( Toyama University ) Black Hole 2003, October 29 (Wed),
Magnetic Fields and Jet Formation John F. Hawley University of Virginia Workshop on MRI Turbulence June 18 th 2008.
Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008.
Three-dimensional MHD Simulations of Jets from Accretion Disks Hiromitsu Kigure & Kazunari Shibata ApJ in press (astro-ph/ ) Magnetohydrodynamic.
1Propeller and Variability IGR J C. FerrignoEWASS Numerical simulations of propeller accretion regime and the variability of IGR.
Star-disc interaction : do planets care ?
MHD JET ACCELERATION AMR SIMULATIONS Claudio Zanni, Attilio Ferrari, Silvano Massaglia Università di Torino in collaboration with Gianluigi Bodo, Paola.
The Disk-Jet Connection: A Universal Picture for Protostellar Jets Ralph Pudritz McMaster University Western Workshop: From Protostellar Disks to Planetary.
Accretion disc dynamos B. von Rekowski, A. Brandenburg, 2004, A&A 420, B. von Rekowski, A. Brandenburg, W. Dobler, A. Shukurov, 2003 A&A 398,
Young Stars I,II magnetic flux and primordial stellar fields infall and disk accretion magnetic fields and turbulence in disks winds/jets magnetospheric.
How Stars Form Shantanu Basu Physics & Astronomy University of Western Ontario Preview Western, May 3/4, 2003.
The Sun.
Excesses of Magnetic Flux and Angular Momentum in Stars National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Magnetized Stars in the Heterogeneous ISM Olga Toropina Space Research Institute, Moscow M.M. Romanova and R. V. E. Lovelace Cornel University, Ithaca,
Diagnosing the Shock from Accretion onto a Young Star Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Collaborators: Steve Cranmer, Moritz.
Magnetic activity in protoplanetary discs Mark Wardle Macquarie University Sydney, Australia Catherine Braiding (Macquarie) Arieh Königl (Chicago) BP Pandey.
Do YSOs host a wide-angled wind? - NIR imaging spectroscopy of H 2 emission - 3. Spectro-Imaging using Gemini-NIFS Subaru UM, 1/30/2008 Hiro Takami (ASIAA)
ON THE LOW LEVEL X-RAY EMISSION OF TRANSITIONAL PULSARS Enrico Bozzo University of Geneva.
Extreme Coronal Mass Ejections in Young Stars: Calibration of Solar Physics Relationships to Investigate Angular Momentum Loss in T Tauri Stars Keivan.
1 Jets from Black Holes: Observations and Theory Mario Livio Space Telescope Science Institute.
Comparing Poynting flux dominated magnetic towers with kinetic-energy dominated jets Martín Huarte-Espinosa, Adam Frank and Eric Blackman, U. of Rochester.
11/01/2016 Variable Galactic Gamma-Ray Sources, Heidelberg, Germany 1 Maxim Barkov MPI-K, Heidelberg, Germany Space Research Institute, Russia, University.
General Relativistic MHD Simulations of Black Hole Accretion Disks John F. Hawley University of Virginia Presented at the Astrophysical Fluid Dynamics.
Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Black Hole Accretion, Conduction and Outflows Kristen Menou (Columbia University) In collaboration with Taka Tanaka (GS)
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
AGN Outflows: Part II Outflow Generation Mechanisms: Models and Observations Leah Simon May 4, 2006.
Global Simulations of Time Variabilities in Magnetized Accretion Disks Ryoji Matsumoto (Chiba Univ.) Mami Machida (NAOJ)
GR/MHD SIMULATIONS OF JET-LAUNCHING Collaborators: J.P. De Villiers, J.F. Hawley, S. Hirose.
A Dynamic Model of Magnetic Coupling of a Black Hole with its surrounding Accretion Disk Huazhong University of Science & Technology ( , Beijing)
Protostellar jets: Theory & models Fabien CASSE Fabien CASSE AstroParticule & Cosmologie (APC) Université PARIS DIDEROT.
Ideal Magnetic Acceleration of Relativistic Flows Long history: Camenzind, Chiueh, Li, Begelman, Heyvaerts, Norman, Beskin, Bogovalov, Begelman, Tomimatsu,
DISK ACCRETION in YOUNG STARS & BROWN DWARFS: THEORY vs OBSERVATIONS
The Role of Magnetic Fields in Black Hole Accretion
Black Hole Spin: Results from 3D Global Simulations
THEORY OF MERIDIONAL FLOW AND DIFFERENTIAL ROTATION
Plasma outflow from dissipationless accretion disks
Basic Properties By Dr. Lohse, University of Berlin
MHD planet simulations
Why only a small fraction of quasars are radio loud?
Contents Introduction Force-Free Approximation Analytical Solutions
Ahmed Ibrahim Kazunari Shibata Kwasan Observatory, Kyoto University
Magnetic acceleration of relativistic jets
An MHD Model for the Formation of Episodic Jets
Presentation transcript:

1 Accretion onto Stars with Complex Fields and Outflows from the Disk-Magnetosphere Boundary Marina Romanova Cornell University May 18, 2010 Min Long (University of Illinois) Richard Lovelace (Cornell University) Akshay Kulkarni (Harvard University) J.-F. Donati (CNRS, Toulouse France COLLABORATORS:

2 Disk-magnetosphere Interaction I. Accretion to stars with complex fields (3D MHD) II. Outflows from disk-magnetosphere boundary (2D) Uchida & Shibata 1985 Camenzind 1990 Konigl 1991; Lovelace et al Matt & Pudritz 2005

I. Accretion to Stars with Complex Fields B=B dip +B quad +B oct + … 3D simulations Cubed sphere grid N=40,50,60 Koldoba, et al. 2002

4 3D simulations of accretion to Tilted Dipoles Romanova, Ustyugova, Koldoba & Lovelace 2003,2004 Different tilts 2 funnel streams High-latitude spots Ang. Momentum – inner disk

5 The dipole may off-center Long, Romanova, Lovelace 2008 Both poles are misplaced to the right

6 Aligned Quadrupole and Dipole Fields Dipodrupole Long, Romanova, Lovelace 2007

7 Misaligned dipole and quadrupole Long, Romanova, Lovelace 2008

8 Octupole Field Hot spots – 2 rings Long, Romanova, Lamb, Kulkarni, Donati 2009

9 V2129 oph BP Tau Magnetic field of V2129 Oph & BP Tau Dipole: 0.35 kG Octupole: 1.2 kG Dipole: 1.2 kG Octupole: 1.6 kG Potential (vacuum) extrapolations Donati, Jardine, Gregory et al., 2007, 2008

10 Model, Initial field, V2129 Oph M=1.35 M_Sun R=2.4 R_Sun P=6.35 days Rcor=6.8 R_star M_dot=6.3 10^10 Donati et al., 2007)

11 Accretion to V2129 Oph Romanova, Long et al. 2009

12 Comparison with a pure dipole field case Dipole field determines the funnel flow and disk-star interaction Octupole field shapes spots Observed chromospheric spot in CaII line Romanova, Long et al. 2009

13 Light curves V2129 Oph BP Tau V2129 Oph BP Tau Romanova et al. 2009Long et al. 2010

14 Magnetic field of V2129 Oph Romanova et al Magnetic field distribution near the star (top) and at larger distances

15 Matter flux problem Dipole field with 350G polar field can not stop the disk at 7 R unless accretion rate is very small Mdot =3x10^-8 (Eisner 05) Mdot=4x10^-9 (Mohanty Mdot=10^-8 (Donati 07) Mdot=6x10^-10 (Donati 09) Simulations: 3x10^-11 Theory: 4x10^-11 Romanova et al. 2009

16 Matter flux problem Disk comes closer – octupolar belt spots dominate Probably, the dipole component is 2-3 times larger Romanova et al. 2009

17 Modeling accretion to BP Tau Dipole: 1.2 kG Octupole: 1.6 kG Long et al 2010

18 II. Outflows: Different Possibilities Shu et al Blandford & Payne 1982 Konigl & Pudritz 2000 Matt & Pudritz 2005,… Ferreira, Dougados, Cabrit 2006 Configuration favorable for outflows Bunching,  v >  d

19 Disk-Magnetosphere Interaction c  star c  disk

V = V Keplerian X-type winds (Shu et al. 1994) but: Star may rotate slowly – no fine-tuning Matter flows into cones Magnetic force Conical Winds Romanova et al. 2009

21 Background – matter flux, arrows – velocity. Young stars: T=2 years Stars of any spin: Conical Winds

22 Rapidly-rotating stars: Propeller regime Slow Conical Wind Poynting Jet Slow Conical Wind Two-component outflow forms Conical winds carry most of matter outwards Poynting jet carries energy and ang. momentum Romanova et al. 2005; Ustyugova et al. 2006; Romanova et al. 2009

23 Outflows at the Propeller Stage: Conical Winds + Axial Jet A star spins-down due to axial magnetic jet

24 Winds from Stars with Complex Fields Different initial configurations of the field Different quadrupole moments Lovelace et al. 2010

25 Wind is Asymmetric:

26

27 Flip-Flop Outflows in Pure Dipole case Lovelace et al. 2010

28 HST Observations: Cycle of inflation Cycle of inflation Simulations: Simulations: 7 years Major outbursts: 2 months HH30 Propeller Case Ustyugova et al. 2010

29 MRI-driven Accretion (large-scale turbulence) Long simulations: T=2,500 days = 7 years A star is in the propeller regime turbulent cells and centrifugal force prevent funnel accretion Spikes of accretion are observed (few months – one year) Accumulation and penetration of matter B Another study of episodic outbursts: Caroline D’Angelo & Spruit, H. BB Romanova et al. 2010

30 If a star with very complex field has a notable dipole component then it determines the disk-star interaction Complex field determines the shape of spots Conical outflows may form if magnetic flux is bunched Propeller-driven outflows carry angular momentum out of the star Outflows may be episodic Outflows from star with complex fields are asymmetric Summary

31 References: Camenzind, M. 1990, Reviews in Modern Astronomy, v. 3, (1990), p. 234 D’Angelo, C. & Spruit, H. 2010, MNRAS, eprint arXiv: Ferreira, J., Dougados, C., Cabrit, S. 2006, A&A, 453, 785 Koldoba, A.V., Romanova, M.M., Ustyugova, G.V., Lovelace, R.V.E. 2002, ApJL, 576, L53 Konigl, A. 1991, ApJ, 370, L39 Konigl, A. & Pudritz, R. 2000, Protostars and Planets IV, p.759 Long, M., Romanova, M.M., & Lovelace, R.V.E. 2007, MNRAS, 374, 436 “—”—” 2008, MNRAS, 386, 1274 Long, M., Romanova, M.M., Lamb, F.K., Kulkarni, A.K., Donati, J.-F. 2009, MNRAS, in press, eprint arXiv: Lovelace,R.V.E., Romanova, M.M., & Bisnovatyi-Kogan, G.S. 1995, MNRAS, 274, 244 Lovelace, R.V.E., Romanova, M.M., Ustyugova, G.V., Koldoba, A.V. 2010, MNRAS, in press Matt, S. & Pudritz, R. 2005, ApJ, 632, L135 Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Lovelace, R.V.E. 2003, ApJ, 595, 1009 “—”—” 2004, ApJ, 610, 920 “—”—” 2009, MNRAS, 399, 1802 Romanova, M.M.,Long, M., Lamb, F.K., Kulkarni, A.K., Donati, J.-f. 2009, in press, eprint arXiv: Shu, F.H. et al. 1994, ApJ, 429, 797 Uchida, Y. & Shibata, K. 1985, PASJ, 37, 515 Ustyugova, G.V., Koldoba, A.V., Romanova, M.M., Lovelace, R.V.E. 2006, ApJ., 646,304