Francesca Gulminelli - LPC Caen, France Extended Nuclear Statistical Equilibrium and applications to (proto)neutron stars Extended Nuclear Statistical.

Slides:



Advertisements
Similar presentations
What is the fate of the sun and other stars??
Advertisements

Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 18 – Mass-radius relation for black dwarfs Chandrasekhar limiting mass Comparison.
Giant resonances, exotic modes & astrophysics
Ch.C. Moustakidis Department of Theoretical Physics Aristotle University of Thessaloniki Greece Equation of state for dense supernova matter 28o International.
Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Francesca Gulminelli & Adriana Raduta LPC Caen, FranceIFIN Bucharest, Romania Statistical description of PNS and supernova matter.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Stefan Rüster, Jürgen Schaffner-Bielich and Matthias Hempel Institut für theoretische Physik J. W. Goethe-Universität, Frankfurt International Workshop.
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
Upper limits on the effect of pasta on potential neutron star observables William Newton Michael Gearheart, Josh Hooker, Bao-An Li.
Compact remnant mass function: dependence on the explosion mechanism and metallicity Reporter: Chen Wang 06/03/2014 Fryer et al. 2012, ApJ, 749, 91.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
K. Kaneko Kyushu Sangyo University, Fukuoka, Japan Particle-number conservation for pairing transition in finite systems A. Schiller Michigan State University,
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
The Evolution of Stars - stars evolve in stages over billions of years 1.Nebula -interstellar clouds of gas and dust undergo gravitational collapse and.
Construct an EOS for use in astrophysics: neutron stars and supernovae wide parameter range: proton fraction Large charge asymmetry: thus investigation.
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
Phase transitions in nuclei: from fission to multifragmentation and back F.Gulminelli – LPC Caen First multifragmentation models: ~1980 (L.Moretto, J.Randrup,
X-Ray image of Crab Nebula Pulsar Credit: NASA/CXC/ASU/J. Hester et al.) Liliana Caballero With Pf. Horowitz Molecular Dynamics Simulations of Non-uniform.
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
16/1/06Eurisol ECT*1 The nuclear liquid gas phase transition Francesca Gulminelli LPC Caen and Institut Universitaire de France The status of.
Constraining neutron star properties with perturbative QCD Aleksi Vuorinen University of Helsinki University of Oxford Main reference: Kurkela,
Equation of State of Neutron-Rich Matter in the Relativistic Mean-Field Approach Farrukh J. Fattoyev My TAMUC collaborators: B.-A. Li, W. G. Newton My.
Catania, October 2012, THERMAL EVOLUTION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia.
Statistical properties of nuclei: beyond the mean field Yoram Alhassid (Yale University) Introduction Beyond the mean field: correlations via fluctuations.
Matthias Hempel, and Jürgen Schaffner-Bielich Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt 44th Karpacz Winter School of Theoretical.
Higher-Order Effects on the Incompressibility of Isospin Asymmetric Nuclear Matter Lie-Wen Chen ( 陈列文 ) (Institute of Nuclear, Particle, Astronomy, and.
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
Neutrino Reactions on the Deuteron in Core-Collapse Supernovae Satoshi Nakamura Osaka University Collaborators: S. Nasu, T. Sato (Osaka U.), K. Sumiyoshi.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Properties of nuclear matter in supenova explosions Igor Mishustin Frankfurt Institute for Advanced Studies Johann Wolfgang Goethe University Frankfurt.
Institut d’Astronomie et d’Astrophysique Université Libre de Bruxelles Structure of neutron stars with unified equations of state Anthea F. FANTINA Nicolas.
Neutrino reactions on two-nucleon system and core-collapse supernova
Quantum calculation of vortices in the inner crust of neutron stars R.A. Broglia, E. Vigezzi Milano University and INFN F. Barranco University of Seville.
Neutrino Processes in Neutron Stars Evgeni E. Kolomeitsev (Matej Bel University, Banska Bystrica, Slovakia)
Probing the isospin dependence of nucleon effective mass with heavy-ion reactions Momentum dependence of mean field/ –Origins and expectations for the.
F. Sammarruca, University of Idaho Supported in part by the US Department of Energy. From Neutron Skins to Neutron Stars to Nuclear.
Limits of applicability of the currently available EoS at high density matter in neutron stars and core-collapse supernovae: Discussion comments Workshop.
Nuclear and neutron matter EOS Trento, 3-7 August 2009 How relevant is for PREX ?
Microscopic Modeling of Supernova Matter Igor Mishustin FIAS, J. W. Goethe University, Frankfurt am Main, Germany and National Research Center “Kurchatov.
Anomalous two-neutron transfer in neutron-rich Ni and Sn isotopes studied with continuum QRPA H.Shimoyama, M.Matsuo Niigata University 1 Dynamics and Correlations.
Ivo Rolf Seitenzahl Graduate Student in Physics Advisor: Jim Truran.
Theory for nuclear physics and astrophysics in France Elias Khan NuPECC, October 9, 2015, Ganil 5 IPNO CEA/DAM SPhN LUTH LPC GANIL Subatech CENBG IPNL.
Many-body theory of Nuclear Matter and the Hyperon matter puzzle M. Baldo, INFN Catania.
Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
What nuclear multifragmentation reactions imply for modifications of the symmetry and surface energy in stellar matter Nihal Buyukcizmeci 1,2, A. Ergun.
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Symmetry energy in the neutron star equation of state and astrophysical observations David E. Álvarez C. Sept 2013 S. Kubis, D. Blaschke and T. Klaehn.
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
Neutrino Studies at the Spallation Neutron Source, ORNL, 8/29/03W.R. Hix (UTenn./ORNL) Neutrino-Nucleus Interactions and the Core Collapse Supernova Mechanism.
Current status and future direction on symmetry energy determination using Heavy Ion Collisions How does this subfield intersect with other subfields?
Modeling Nuclear Pasta and the Transition to Uniform Nuclear Matter with the 3D Hartree-Fock Method W.G.Newton 1,2, Bao-An Li 1, J.R.Stone 2,3 1 Texas.
Waseda univ. Yamada lab. D1 Chinami Kato
Shalom Shlomo Cyclotron Institute Texas A&M University
Active lines of development in microscopic studies of
Nuclear structure far from stability
EOS discussion.
Stellar core collapse with QCD phase transition
W.G.Newton1, J.R.Stone1,2 1University of Oxford, UK
Fermi Gas Distinguishable Indistinguishable Classical degenerate depend on density. If the wavelength.
JLab6: Cluster structure connects to high-momentum components and internal quark modification of nuclei Short-Range Correlations (SRCs) dominated by np.
K. Hagel Nucleus-Nucleus 2015 Catania, Italy 23-Jun-2015
Symmetry energy coefficients and shell gaps from nuclear masses
INFN, Sezione di Catania
Tests of the Supernova Equation of State using Heavy Ion Collisions
Presentation transcript:

Francesca Gulminelli - LPC Caen, France Extended Nuclear Statistical Equilibrium and applications to (proto)neutron stars Extended Nuclear Statistical Equilibrium and applications to (proto)neutron stars Collaboration: LPC Caen, LNS Catania, LUTH Meudon, IFIN Bucarest

Dense matter in the universe F.S.Kitaura et al, A&A 450 (06) 345 Supernova explosion occurs via core-collapse in very massive stars (M>8M sun )

Dense matter in the universe Supernova explosion occurs via core-collapse in very massive stars (M>8M sun ) 10 6  g/cm <T<50 MeV in the core T.Fischer et al, 2011 ApJS M sun progenitor

Dense matter in the universe Supernova explosion occurs via core-collapse in very massive stars (M>8M sun ) 10 6  g/cm <T<50 MeV in the core The density in the residual pulsar (neutron star) is of the same order    g/cm 3 => Matter with nucleonic or sub-nucleonic dof !

Matter below saturation Standard nuclear physics: theory very (?) well known Most of the supernova dynamics + NS crust SN: T>0, y p given by weak rates NS: T=0,  -equilibrium Same physical system but different thermo conditions => very different formalisms Cluster dof NSE Nucleon dof DFT

HF(B) or (E)TF in the WS cell Extended to finite temperature 6/27 I- DFT for neutron star matter J. W. Negele and D. Vautherin, NPA 207, 298 (1973)

HF(B) or (E)TF in the WS cell Extended to finite temperature Many applications: crust composition, pasta, cooling…. 7/27 I- DFT for neutron star matter, R.Wolf et al, PRL 110, (2013) M.Fortin et al., PRC 82 (2010), S.S.Avancini et al., PRC 79 (2009), droplets rods slabs homogeneous

II- NSE for supernova matter R.I.Epstein W.D.Arnett APJ 201 (1975) 202

Finite temperature stellar matter Cluster distribution + consistency with DFT&correct T=0 limit 1.Elementary WS cell at T>0: volume associated to each (dressed) cluster 2.mapping microscopic WS cell cluster+gas (Skyrme functionals for both) 3.distribution of WS cells F.Gulminelli, A.Raduta, ArXiV: Free energy of the in-medium cluster Self-interacting nucleons Cluster distribution

Extended NSE: T=0 F.Gulminelli, A.Raduta, ArXiV: ° NV: Negele-Vautherin (HF) - BPS+BBP: Baym (cluster model) This work (Sly4) This work (SKM*) M.Fortin, C.Providencia, F.Gulminelli, et al., in preparation Can be applied at very low density like cluster models Gives the correct melting behavior of clusters at high density like microscopic calculations Unified EoS below and above   SkI4 mean field Pichon-Haensel (cluster model) This work (SkI4) (fm -3 )

Application: EoS dependence of the NS crust width M.Fortin, C.Providencia, F.Gulminelli, et al., in preparation EoS dependence of NS properties needs a unified EoS!

Extended NSE: T>0 The T>0 distribution cannot be reduced to the most probable cluster The presence of a distribution changes the relation  => Even the average quantites !  B =10 -3 fm -3 T=1.5 MeV F.Gulminelli, A.Raduta, ArXiV: WS cell free-energy surfaces Cluster distribution and zoom on light clusters Single Cluster Approximation

Core collapse 25 Mo - CoConuT Application: electron capture during core collapse F.Gulminelli, A.Raduta, M.Oertel, in preparation time

Inclusion of pairing in the T>0 BCS approximation Cao L.G., Lombardo U. and Schuck P., PRC74(2006) BHF in-medium surface tension modification in the LDA S.Burrello, F.Gulminelli, M.Colonna, in preparation Excluded volume

T=0 results T=0 results Neutron drip Crust-core transition BB Good agreement with full HFB

Temperature dependence of the proton fraction in  -equilibrium The temperature evolution of the proton fraction is important at low density Pairing is important close to the crust-core transition

Effect of the cluster distribution The cluster distribution becomes wider with increasing temperature At high temperature the clusters do not dissolve into a homogeneous gas, but in a gas of neutron-rich resonances Sizeable effects on the energy density close to the crust-core transition

Heat capacity Results consistent with HFB when heavy clusters dominate Temperature dependence of the proton fraction cannot be neglected Great sensitivity to the mass model Extra peaks corresponding to the emergence and dissolution of light resonances

Conclusions Unified theoretical modelling of T=0 (NS) and T>0 (SN) matter o T=0: a single WS cell variationally determined o T>0: a statistical distribution of WS cells=dressed clusters T=0: a unified EoS below and above saturation o Melting of clusters in the dense medium o No artificial discontinuity in the P(r) for TOV o => effect of the symmetry energy on the radius and crust thickness T>0: cluster distribution in hot NS o Inclusion of pairing in the local BCS approximation o Pairing gap from BHF o Different peaks in CV due to the presence of light resonances