laser-cooled electron sources experiments / simulations

Slides:



Advertisements
Similar presentations
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Advertisements

The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
What is not yet possible?
LC-ABD P.J. Phillips, W.A. Gillespie (University of Dundee) S. P. Jamison (ASTeC, Daresbury Laboratory) A.M. Macleod (University of Abertay) Collaborators.
05/03/2004 Measurement of Bunch Length Using Spectral Analysis of Incoherent Fluctuations Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
Sub-picosecond Megavolt Electron Diffraction International Symposium on Molecular Spectroscopy June 21, 2006 Fedor Rudakov Department of Chemistry, Brown.
A Proof-of Principle Study of 2D optical streaking for ultra-short e-beam diagnostics using ionization electrons & circular polarized laser Lanfa Wang.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
SPACE CHARGE EFFECTS IN PHOTO-INJECTORS Massimo Ferrario INFN-LNF Madison, June 28 - July 2.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
Lecture 3: Laser Wake Field Acceleration (LWFA)
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
EuroNNAc Workshop, CERN, May 2011 External Injection at INFN-LNF ( integrating RF photo-injectors with LWFA ) Luca Serafini - INFN/Milano High Brightness.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
CSR calculation in ERL merger section Tsukasa Miyajima KEK, High Energy Accelerator Research Organization 8 November, 2010, 13:30 Mini Workshop on CSR.
Magnetic Compression of High Brightness Beams: Survey of Experimental Results Scott G. Anderson ICFA Sardinia July 2002.
Ultrafast Electron Sources for Diffraction and Microscopy Workshop December 12 th - 14 th 2012, California NanoScience Institute at UCLA Novel Ultrafast.
Modelling of the ALICE Injector Julian McKenzie ASTeC STFC Daresbury Laboratory IOP Particle Accelerators and Beams Group Status and Challenges of Simulation.
Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012 CLASSE Cornell University CHESS & ERL 1 Cornell Laboratory for Accelerator-based ScienceS.
Accelerator and Detector R&D, August Diagnostics Related to the Unwanted Beam Pavel Evtushenko, Jlab FEL.
FEL simulation code FAST Free-Electron Laser at the TESLA Test Facility Generic name FAST stands for a set of codes for ``full physics'' analysis of FEL.
Low Emittance RF Gun Developments for PAL-XFEL
IRPSS: A Green’s Function Approach to Modeling Photoinjectors Mark Hess Indiana University Cyclotron Facility & Physics Department *Supported by NSF and.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
Transverse Profiling of an Intense FEL X-Ray Beam Using a Probe Electron Beam Patrick Krejcik SLAC National Accelerator Laboratory.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
SFLASH  SASE interference setup & optics rough estimation 1d estimation 3d estimation summary.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
Interpretation of beam current experimental results in HoBiCaT Gun0 Vladimir Volkov.
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
Ellipsoidal bunches by 2D laser shaping Bas van der Geer, Jom Luiten Eindhoven University of Technology DESY Zeuthen 30 November ) Experimental progress.
R&D opportunities for photoinjectors Renkai Li 10/12/2015 FACET-II Science Opportunities Workshops October, 2015 SLAC National Accelerator Laboratory.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
An overview of TREDI & CSR test cases L. Giannessi – M. Quattromini Presented at “Coherent Synchrotron and its impact on the beam dynamics of high brightness.
Velocity bunching from S-band photoinjectors Julian McKenzie 1 st July 2011 Ultra Bright Electron Sources Workshop Cockcroft Institute STFC Daresbury Laboratory,
Warp LBNL Warp suite of simulation codes: developed to study high current ion beams (heavy-ion driven inertial confinement fusion). High.
Simulation challenges for laser-cooled electron sources Bas van der Geer Marieke de Loos Pulsar Physics The Netherlands Jom Luiten Edgar.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
A compact, soft X-ray FEL at KVI
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
Accelerator Laboratory of Tsinghua University Generation, measurement and applications of high brightness electron beam Dao Xiang Apr-17, /37.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Ultra-short electron bunches by Velocity Bunching as required for Plasma Wave Acceleration Alberto Bacci (Sparc Group, infn Milano) EAAC2013, 3-7 June,
Python based particle tracking code for monitor design Kenichirou Satou J-PARC/KEK.
Abstract: We present on overview of the STAR project (Southern european Thomson source for Applied Research), in progress at the Univ. of Calabria (Italy)
Production of coherent X-rays with a free electron laser based on optical wiggler A.Bacci, M.Ferrario*, C. Maroli, V.Petrillo, L.Serafini Università e.
Ultracold electron (& ion) source Edgar Vredenbregt with Merijn Reijnders, Gabriel Taban, Wouter Engelen, Nicola Debernardi, Bas van der Geer, Peter Mutsaers,
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Coherence & Quantum Technology
Coherence & Quantum Technology
Tunable Electron Bunch Train Generation at Tsinghua University
Wakefield Accelerator
Beyond the RF photogun Jom Luiten Seth Brussaard
Free Electron Lasers (FEL’s)
Using a Bessel Light Beam as an Ultra-short Period Helical Undulator
Z. Huang LCLS Lehman Review May 14, 2009
Status of FEL Physics Research Worldwide  Claudio Pellegrini, UCLA April 23, 2002 Review of Basic FEL physical properties and definition of important.
Longitudinal-to-transverse mapping and emittance transfer
Longitudinal-to-transverse mapping and emittance transfer
Introduction to Free Electron Lasers Zhirong Huang
Presentation transcript:

laser-cooled electron sources experiments / simulations www.pulsar.nl Bas van der Geer Marieke de Loos Pulsar Physics The Netherlands Jom Luiten, Edgar Vredenbregt Wouter Engelen, Peter Pasmans Eindhoven University of Technology 1

Overview Can we use elections directly instead of converting them to photons? 100kV photoemission UED set-up Laser cooled-source Concept Experimental results GPT simulations Can a laser-cooled source drive a SASE-FEL?

Single-shot Electron Diffraction Charged particle optics RF compression From 10 ps to <100 fs Van Oudheusden et al., JAP 102, 093501 (2007) PRL 105, 264801 (2010) Photocathode PRL 93, 094802 (2004) fs laser pulse

Single-shot Diffraction Pattern Monocrystalline Au U = 100 keV Q = 400 fC σspot = 200 μm Spot analysis: L┴ ≈ 3 nm Study macromolecules: mm sized crystals!? … or a better source

New Concept Electron Source Photoemission source Ultracold source σE = 0.5 eV T = 5000 K Near-threshold photoionization T = 10 K! Angular spread Taban et al., EPL 91, 46004 (2010) Coherence length

Ultracold Electron Source Trap & Cool Magneto-optical trap Density ≈ 1016 / m3 RMS size ≈ 1 mm T = 100 μK Ionize Ultracold plasma Ionization radius ≈ 50 μm Accelerate Ultracold source Bunch energy E = 15 keV Luiten et al., PRL 95, 164801 (2005) McCulloch et al., Nat. Phys. 7, 785 (2011) Killian et al., PRL 83, 4776 (1999)

Measure T with Waist Scan 220 K 1 90 K 1 2 3 20 K 2 3

Temperature vs. Excess Energy T = 20 K! L ┴ = 40 nm @ 200 μm spot

Dependence of T on Polarization  Ultracold  Ultrafast

Temperature vs. Excess Energy T = 20 K!?

Measure T with TEM Grid Same result: Ultracold bunches

Temperature Model Potential Electron trajectories Laser pulse RMS vr T F Bordas et al., Phys. Rev. A 58, 400 (1998) Electrons escape mostly in forward direction

Comparison Measurement with Model  Ultracold Ultrafast (?)

Brighter sources, better simulations www.pulsar.nl Photogun: for example DESY / LCLS: Initial emittance ~ 1 μm (eV energy spread) Emittance ~ preserved in entire device Required simulation accuracy: <1 μm Laser-cooled sources: Initial emittance: < 1 nm (meV energy spread) Emittance? Desired simulation accuracy: <1 nm Quantum degenerate sources … 14

‘Typical’ simulation code: GPT www.pulsar.nl Tracks sample particles in time-domain Relativistic equations of motion Fully 3D, including all non-linear effects GPT solves with 5th order embedded Runge Kutta, adaptive stepsize GPT can track ~106 particles on a PC with 1 GB memory Challenge: E(r,t), B(r,t), flexibility without compromising accuracy External fields Coulomb interactions Analytical expressions Field-maps Particle in Cell All interactions {E,B}=f(x,y,z,t) 15

Coulomb interactions Macroscopic: Space-charge Average repulsion force www.pulsar.nl Macroscopic: Space-charge Average repulsion force Bunch expands Deformations in phase-space Governed by Poisson’s equation Microscopic: Disorder induced heating Neighbouring particles ‘see’ each other Potential energy → momentum spread Stochastic effect Governed by point-to-point interactions GPT simulations PRL 93, 094802 O.J. Luiten et. al. JAP 102, 093501 T. van Oudheusden et. al. PRST-AB 9, 044203 S.B. van der Geer et. al. PRL 102, 034802 M. P. Reijnders et. al. JAP 102, 094312 S.B. van der Geer et. al. Nature Photonics Vol 2, May 2008 M. Centurion et. al. And many others… 16

Particle-Mesh (in-Cell) www.pulsar.nl Bunch in laboratory frame Mesh-based electrostatic solver in rest-frame Bunch is tracked in laboratory frame Calculations in rest-frame Mesh Density follows beam density Trilinear interpolation to obtain charge density Solve Poisson equation 2nd order interpolation for the electrostatic field E’ Transform E’ to E and B in laboratory frame Bunch in rest frame Meshlines Charge density Poisson equation Interpolation Lorentz transformation to laboratory frame 17

Coulomb interactions px x Disorder induced heating Space charge t=0 www.pulsar.nl t=0 Disorder induced heating px Space charge t=10 ps x All interactions t=20 ps Ideal particle-in-Cell GPT simulations: n=1018 m–3 18

Disorder induced heating www.pulsar.nl Random processes High U Low U Excess potential energy U px σpx Coulomb interactions Momentum spread x Temperature ↑ Brightness ↓ 19

Paradigm shift www.pulsar.nl Laser cooled sources Disorder induced heating Fast acceleration Breaking randomness Tree-codes (B&H, FMM, P3M) Every particle matters Ions and electrons Ab initio No Liouville to the rescue Divergent rms values RF-photoguns Space-charge ‘Shaping’ the beam Ellipsoidal bunches Particle-in-Cell Macro-particles One species Fluid assumption Liouville holds Convergent rms values k Tphotogun >> 0.02 n1/3 q2 / ε0 >> k Tlaser-cooled 20

Algorithms… All interactions O(N2): PP Particle-Particle → slow www.pulsar.nl All interactions O(N2): PP Particle-Particle → slow P3M Particle-Particle Particle-Mesh Accuracy traded for speed: B&H Barnes&hut tree: O(N log N) FMM Fast-Multipole-Method: O(N) … Imaga credit: Southern European observatory 21

Barnes-Hut Hierarchical tree algorithm: www.pulsar.nl Hierarchical tree algorithm: Includes all Coulomb interactions O(N log N) in CPU time User-selectable accuracy Division of space Tree data structure J. Barnes and P. Hut, Nature 324, (1986) p. 446. 22

Comparison with experiments www.pulsar.nl M. P. Reijnders, N. Debernardi, S. B. van der Geer, P.H.A. Mutsaers, E. J. D. Vredenbregt, and O. J. Luiten, Phase-Space Manipulation of Ultracold Ion Bunches with Time-Dependent Fields PRL 105, 034802 (2010). 23

Laser-cooled e– source www.pulsar.nl Fields: Cavity field 20 MV/m rf-cavity DC offset 3 MV/m Particles: Charge 0.1 pC (625k e−) Initial density 1018 / m3 Ionization time 10 ps Initial Temp 1 K GPT tracking: - All particles - Realistic fields - All interactions 24

Longitudinal emission dynamics www.pulsar.nl Longitudinal acceleration rf field Combined spacecharge electrons ions ions electrons rf-field Ez, color coded on r 25

Transverse emission dynamics www.pulsar.nl Transverse acceleration While new ones are still being ionized While ions keep them together ions electrons Er, color coded on z 26

Laser cooled e– diffraction www.pulsar.nl GPT Simulations include: Realistic external fields Start as function of time and position Relativistic equations of motion All pair-wise interactions included 27

Laser cooled e– diffraction www.pulsar.nl GPT results: εx 20 nm (rms) 10% slice ~1 nm Energy 120 keV Spread 1% εz 60 keV fs Charge 0.1 pC (625,000 e–) Ultracold Electron Source for Single-Shot, Ultrafast Electron Diffraction Microscopy and Microanalysis 15, p. 282-289 (2009). S.B. van der Geer, M.J. de Loos, E.J.D. Vredenbregt, and O.J. Luiten 28

Miniaturized DESY/LCLS ?? www.pulsar.nl RF-photogun GeV Accelerator Undulator laser-cooled source MeV accelerator Ti:Saphire 800 nm, TW TW laser 29

FEL equations www.pulsar.nl 30

FEL driven by laser-cooled source www.pulsar.nl Charge 1 pC 0.1 pC Slice emittance 13 nm 1 nm Longitudinal emittance 1 keV ps 0.1 keV ps Peak current 100 A 1 mA Energy 1.3 GeV 15 MeV Undulator strength 0.1 0.5 λU 1.3 mm 800 nm ρFEL 0.0002 0.00002 ρQUANTUM 0.1 Gain Length 0.28 m 2 mm Wavelength 0.1 nm 0.4 nm Power (1D) 25 MW 50 W, 60k photons 31

Conclusion Laser-cooled sources: Very promising new development www.pulsar.nl Laser-cooled sources: Very promising new development Experimental results match (GPT) predictions Bright future Higher brightness: Requires new simulation techniques for the calculation of all pair-wise Coulomb interactions Such as implemented in GPT where we can now track >1M particles including all pair-wise interactions Produces phase-space distributions with divergent rms values 32

www.pulsar.nl Globular cluster Messier 2 by Hubble Space Telescope.. Located in the constellation of Aquarius, also known as NGC 7089. M2 contains about a million stars and is located in the halo of our Milky Way galaxy. 33