Wednesday, July 8, 2009PHYS 1442-001, Summer 2009, Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #9 Wednesday, July 8, 2009 Dr. Jaehoon Yu Chapter 20.

Slides:



Advertisements
Similar presentations
Announcements EXAM 2 will be returned ?? Homework for tomorrow…
Advertisements

Chapter 20 Magnetism.
Magnetism Review and tid-bits. Properties of magnets A magnet has polarity - it has a north and a south pole; you cannot isolate the north or the south.
III. Magnetism Fields produced mostly by moving charges acting on moving charges.
Tuesday Jul 10, PHYS 1444 Ian Howley PHYS 1444 Lecture #10 Tuesday July 10, 2012 Ian Howley Chapter 27 Magnetism Magnetic Force.
Chapter 32 Magnetic Fields.
Wednesday, Oct. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #16 Wednesday, Oct. 26, 2005 Dr. Jaehoon Yu Charged Particle.
Monday, June 24, 2013PHYS , Summer 2013 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #10 Monday, June 24, 2013 Dr. Jaehoon Yu Chapter 20 -Electric.
Chapter 22 Magnetism.
PHY 184 Spring 2007 Lecture 21 Title: Magnetism 2/14/ Lecture 21.
Chapter 27 Magnetism. When the switch is closed, the capacitor will begin to charge. As it does, the voltage across it increases, and the current through.
Copyright © 2009 Pearson Education, Inc. Lecture 8 - Magnetism.
Chapter 19 Magnetism. clicker A wire of resistance 2 Ohms has been shaped in to a pentagon. What is the equivalent resistance between points A and B.
Chapter 21.  Magnets, as you know, can exert forces on one another.  In electricity, we talk about negative and positive dipoles or charges.  In magnetism,
Chapter 27 Magnetism HW#8; Due Wednesday, April 15;
Magnetism Magnetism is a force of attraction or replusion that acts at a distance. It is due to a magnetic field, which is caused by moving electrically.
Admin: mid-term 2 grades and solutions posted. Scripts back at the end Average = 84% (up from 72%). Excellent work! Assignment 10 posted. Due on Monday.
Lecture Outline Chapter 19 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Wednesday, Oct. 19, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #14 Wednesday, Oct. 19, 2005 Dr. Jaehoon Yu RC circuit.
Fields Model used when force act a distance. Quantity / unit measure.
Monday, Mar. 27, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #16 Monday, Mar. 27, 2006 Dr. Jaehoon Yu Sources of Magnetic.
Magnetism Force of Mystery demo. Magnetism Standards Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic.
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 22 Physics, 4 th Edition James S. Walker.
Review Problem Review Problem Review Problem 3 5.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
Copyright © 2009 Pearson Education, Inc. Chapter 29: Magnetic Fields.
Thursday, Nov. 3, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #18 Thursday, Nov. 3, 2011 Dr. Jaehoon Yu Torque on a Current.
Chapter 19 Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted Poles of a magnet are the ends where objects are.
Thursday March 31, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #16 Thursday Mar 31, 2011 Dr. Andrew Brandt HW7 Ch 27 is due Fri.
Magnetism. Chapter 19 Problems ,2,5, ,15, ,21, , ,38, , ,47.
Chapter 20 Magnetism. Units of Chapter 20 Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic.
Thursday, Oct. 27, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #16 Thursday, Oct. 27, 2011 Dr. Jaehoon Yu Magnetism and.
Magnetism. Magnets, Magnetic Poles, and Magnetic Field Direction Magnets have two distinct types of poles; we refer to them as north and south.
Chapter 28 Lecture 26 Magnetic Fields: I. Magnetic Poles Every magnet, regardless of its shape, has two poles Called north and south poles Poles exert.
Tuesday October 16, PHYS Dr. Andrew Brandt PHYS 1444 – Section 003 Lecture #13 Tuesday October 16, 2012 Dr. Andrew Brandt Chapter 26 Chapter.
Chapter 19: Magnetism Magnets  Magnets Homework assignment : 18,25,38,45,50 Read Chapter 19 carefully especially examples.
Chapter 20 Magnetism Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Chapter 19 Magnetism. Fig. 19.1, p.587 Magnets Poles of a magnet are the ends where objects are most strongly attracted – Two poles, called north and.
22.7 Source of magnetic field due to current
PHYS 1442 – Section 004 Lecture #12 Wednesday February 26, 2014 Dr. Andrew Brandt Chapter 20 -Charged Particle Moving in Magnetic Field -Sources of Magnetic.
Wednesday, Mar. 7, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #14 Wednesday, Mar. 7, 2012 Dr. Jaehoon Yu RC Circuits.
2/24/2014 PHYS Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #11 Monday February Dr. Andrew Brandt CH 20 Magnetism -Magnets and.
Magnetism. Magnets Poles of a magnet are the ends where objects are most strongly attracted – Two poles, called north and south Like poles repel each.
Chapter 19 Magnetism. Magnetism is one of the most important fields in physics in terms of applications. Magnetism is closely linked with electricity.
Physics Chapter 21: Magnetism. ☺Magnets ☺Caused by the Polarization of Iron Molecules ☺Material Containing Iron (Fe)
Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract. If you cut a magnet in half, you don’t get a north pole.
Chapter 27 Magnetism HW6: Chapter 25: Pb. 19, Pb.25, Pb. 31 Chapter 26: Pb 18, Pb.32, Pb.50, Pb. 51 Due Wednesday, March 23.
Phys102 Lecture 13, 14, 15 Magnetic fields
Chapter 19 Magnetism.
PHYS 1444 – Section 003 Lecture #17
PHYS 1442 – Section 001 Lecture #10
PHYS 1444 – Section 501 Lecture #16
Chapter 20: Magnetism Purpose: To describe magnetic field around a permanent magnet. Objectives: Describe a magnetic poles Describe magnetic field. Magnetic.
PHYS 1442 – Section 001 Lecture #9
Electromagnetism It was observed in the 18th century that an electric current can deflect a compass needle the same way a magnetic field can, and a connection.
Chapter 19 Magnetism.
Chapter 19 Magnetism.
PHYS 1444 – Section 02 Lecture #13
Magnetism Force of Mystery demo.
PHYS 1444 – Section 02 Lecture #14
PHYS 1444 – Section 501 Lecture #14
Chapter 27 Magnetism Chapter 27 opener. Magnets produce magnetic fields, but so do electric currents. An electric current flowing in this straight wire.
Pre-AP Physics Chapter 20
PHYS 1444 – Section 002 Lecture #17
PHYS 1444 – Section 002 Lecture #17
PHYS 1444 – Section 003 Lecture #15
PHYS 1444 – Section 003 Lecture #16
PHYS 1442 – Section 001 Lecture #10
Presentation transcript:

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #9 Wednesday, July 8, 2009 Dr. Jaehoon Yu Chapter 20 -Magnets and Magnetic Field -Electric Current and Magnetism -Magnetic Forces on Electric Current -About Magnetic Field -Magnetic Forces on a Moving Charge -Charged Particle Path in a Magnetic Field Today’s homework is #5, due 9pm, Thursday, July 16!!

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 2 Announcements Second non-comprehensive exam –Date will be moved to Monday, July 27 –Covers from CH19 – what we finish Monday, July 20 –There will be a help session Wednesday, July 22, in class Evaluation criteria –Homework: 30% –Final exam: 25% –Better of the two term exams: 20% –Lab: 15% –Quizzes: 10% –Extra credit: 10% Reading assignments –CH20 – 8, 20 – 9, 20 – 10 and 20 – 11

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 3 Magnetism What are magnets? –Objects with two poles, north and south poles The pole that points to geographical north is the north pole and the other is the south pole –Principle of compass –These are called magnets due to the name of the region, Magnesia, where rocks that attract each other were found What happens when two magnets are brought to each other? –They exert force onto each other –What kind? –Both repulsive and attractive forces depending on the configurations Like poles repel each other while the unlike poles attract

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 4 Magnetism So the magnet poles are the same as the electric charge? –No. Why not? –While the electric charges (positive and negative) can be isolated the magnet poles cannot be isolated. –So what happens when a magnet is cut? If a magnet is cut, two magnets are made. The more they get cut, the more magnets are made –Single pole magnets are called the monopole but it has not been seen yet Ferromagnetic materials: Materials that show strong magnetic effects –Iron, cobalt, nickel, gadolinium and certain alloys Other materials show very weak magnetic effects

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 5 –The direction of the magnetic field is tangent to a line at any point –The direction of the field is the direction the north pole of a compass would point to –The number of lines per unit area is proportional to the strength of the magnetic field –Magnetic field lines continue inside the magnet –Since magnets always have both the poles, magnetic field lines form closed loops unlike electric field lines Magnetic Field Just like the electric field that surrounds electric charge, a magnetic field surrounds a magnet What does this mean? –Magnetic force is also a field force –The force one magnet exerts onto another can be viewed as the interaction between the magnet and the magnetic field produced by the other magnet –What kind of quantity is the magnetic field? Vector or Scalar? So one can draw magnetic field lines, too. Vector

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 6 Earth’s Magnetic Field What magnetic pole does the geographic north pole has to have? –W. Gilbert realized in 1600s that the Earth is a giant magnet –Magnetic south pole. What? How do you know that? –Since the magnetic north pole points to the geographic north, the geographic north must have magnetic south pole The pole in the north is still called geomagnetic north pole just because it is in the north –Similarly, south pole has magnetic north pole The Earth’s magnetic poles do not coincide with the geographic poles  magnetic declination (0 – 20 o in the US) –Geomagnetic north pole is in northern Canada, some 1300km off the true north pole Earth’s magnetic field line is not tangent to the earth’s surface at all points –The angle the Earth’s field makes to the horizontal line is called the angle dip

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 7 Electric Current and Magnetism In 1820, Oersted found that when a compass needle is placed near an electric wire, the needle deflects as soon as the wire is connected to a battery and the current flows –Electric current produces a magnetic field The first indication that electricity and magnetism are the same thing –What about a stationary electric charge and magnet? They don’t affect each other. The magnetic field lines produced by a current in a straight wire is in the form of circles following the “right-hand” rule –The field lines follow right-hand’s fingers wrapped around the wire when the thumb points to the direction of the electric current

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 8 Directions in a Circular Wire? OK, then what are the directions of the magnetic fields generated by the current flowing through circular loops?

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 9 Magnetic Forces on Electric Current Since the electric current exerts force on a magnet, the magnet should also exert force on the electric current –Which law justifies this? Newton’s 3 rd law –This was also discovered by Oersted Direction of the force is always –perpendicular to the direction of the current and also –perpendicular to the direction of the magnetic field, B Experimentally the direction of the force is given by another right-hand rule  When the fingers of the right-hand points to the direction of the current and the finger tips bent to the direction of magnetic field B, the direction of thumb points to the direction of the force

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 10 Magnetic Forces on Electric Current OK, we are set for the direction but what about the magnitude? It is found that the magnitude of the force is directly proportional to –the current in the wire –The length of the wire in the magnetic field (if the field is uniform) –The strength of the magnetic field The force also depends on the angle θ between the directions of the current and the magnetic field –When the wire is perpendicular to the field, the force is the strongest –When the wire is parallel to the field, there is no force at all Thus the force on current I in the wire with the length l in a uniform field B is

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 11 Magnetic Forces on Electric Current Magnetic field strength B can be defined using the previous proportionality relationship w/ the constant 1: If θ=90 o, and if θ=0 o So the magnitude of the magnetic field B can be defined as – where F max is the magnitude of the force on a straight length l of wire carrying a current I when the wire is perpendicular to B The relationship between F, B and I can be written in a vector formula: –l –l is the vector whose magnitude is the length of the wire and its direction is along the wire in the direction of the conventional current –This formula works if B is uniform. If B is not uniform or l does not form the same angle with B everywhere, the infinitesimal force acting on a differential length dl dl is

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 12 About the Magnetic Field, B The magnetic field is a vector quantity The SI unit for B is tesla (T) –What is the definition of 1 Tesla in terms of other known units? –1T=1N/Am –In older names, tesla is the same as weber per meter-squared 1Wb/m 2 =1T The cgs unit for B is gauss (G) –How many T is one G? 1G=10 -4 T –For computation, one MUST convert G to T at all times Magnetic field on the Earth’s surface is about 0.5G=0.5x10 -4 T On a diagram, for field coming out and for going in.

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 13 Properties of Vector Product Vector Product is Non-commutative What does this mean? If the order of operation changes the result changes Following the right-hand rule, the direction changes Vector Product of two parallel vectors is 0. Thus, If two vectors are perpendicular to each other Vector product follows distribution law The derivative of a Vector product with respect to a scalar variable is

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 14 More Properties of Vector Product The relationship between unit vectors, Vector product of two vectors can be expressed in the following determinant form

Example 20 – 1 Magnetic force on a current carrying wire. A wire carrying a 30 A current I, has a length l = 12cm between the pole faces of a magnet at an angle θ =60 o as in the figure. The magnetic field is approximately uniform at 0.9T. We ignore the field beyond the pole pieces. What is the magnitude of the force on the wire? Which formula should we use for this problem? The magnitude of the magnitude of the magnetic force is Wednesday, July 8, PHYS , Summer 2009, Dr. Jaehoon Yu

Wednesday, July 8, 2009PHYS , Summer 2009, Dr. Jaehoon Yu 16 Example 20 – 2 Measuring a magnetic field. A rectangular loop of wire hangs vertically as shown in the figure. A magnetic field B is directed horizontally perpendicular to the wire, and points out of the page. The magnetic field B is very nearly uniform along the horizontal portion of wire ab (length l =10.0cm) which is near the center of a large magnet producing the field. The top portion of the wire loop is free of the field. The loop hangs from a balance which measures a downward force ( in addition to the gravitational force) of F=3.48x10 -2 N when the wire carries a current I=0.245A. What is the magnitude of the magnetic field B at the center of the magnet? Magnetic force exerted on the wire due to the uniform field is SinceMagnitude of the force is Solving for B Something is not right! What happened to the forces on the loop on the side? The two forces cancel out since they are in opposite direction with the same magnitude.