Diuretic Agents.

Slides:



Advertisements
Similar presentations
Chapter 51 Diuretic Agents
Advertisements

Diuretics Clinical Conditions Requiring Diuretic Therapy:
THIAZIDE DIURETICS Secreted into the tubular lumen by the organic acid transport mechanisms in the proximal tubule Act on the distal tubule to inhibit.
Diuretics. A. Kidney functions Kidneys have a number of essential functions:
Chapter 41 Diuretics 1.
Diuretics and Dehydrants. §1 Diuretics Abnormalities in fluid volume and electrolyte composition are common and important clinical problems. Drugs that.
DIURETICS. Functions of the kidneys Volume Acid-base balance Osmotic pressure Electrolyte concentration Excretion of metabolites and toxic substances.
Diuretics. Why do we want to know about diuretics? What do kidneys do? What can go wrong? Interventions that can be used how do they work? Effects, side.
Excretion of Water and Electrolytes
BIMM118 Renal Pharmacology Diuretics: Carbonic Anhydrase Inhibitors Thiazides Loop Diuretics Potassium-sparing Diuretics.
DIURETICS Brogan Spencer and Laura Smitherman. What is a diuretic? Substance that promotes the formation (excretion) of urine.
Control of Renal Function. Learning Objectives Know the effects of aldosterone, angiotensin II and antidiuretic hormone on kidney function. Understand.
Diuretics Chris Hague, PhD
DIURETICS By: Prof. A. Alhaider.
Diuretics iii Aldosterone antagonist & Sodium Channel Inhibitors.
Diuretics. From Knauf & Mutschler Klin. Wochenschr : % 20% 5% 4.5% 0.5% Volume 1.5 L/day Urine Na 100 mEq/L Na Excretion 155 mEq/day.
+ H 2 CO 3 ATP Lumen H + 3Na + Carbonic anhydrase Early Proximal tubule H 2 O + HCO 3 - H 2 CO 3 Carbonic anhydrase CO 2 H 2 O HCO Na + Glucose.
Lecture 4 Dr. Zahoor 1. We will discuss Reabsorption of - Glucose - Amino acid - Chloride - Urea - Potassium - Phosphate - Calcium - Magnesium (We have.
Diuretic Agents in Hypertension and other disorders
 Paired kidneys  A ureter for each kidney  Urinary bladder  Urethra 2.
Prof. Hanan Hagar Pharmacology Department
Diuretics Remove sodium & water
DIURETIC DRUGS.
1-Overview 2-Classification 3-Indiviual drugs 1-Indications of Diuretics. 2-Adverse effects. 3-Mannitol and Carbonic Anhydrase inhibitors.
BYL Nair Ch. Hospital, Mumbai
Lecture – 3 Dr. Zahoor 1. TUBULAR REABSORPTION  All plasma constituents are filtered in the glomeruli except plasma protein.  After filtration, essential.
Diuretics the role of different portions of the nephron in ion exchange; the sites of action and pharmacology of diuretics; the therapeutic applications.
BLOCK: URIN 313 PHYSIOLOGY OF THE URINARY SYSTEM LECTURE 3 1 Dr. Amel Eassawi.
Diuretics Diuretics Heny Ekowati Pharmacy Departement Faculty of Medicine and Health Sciences.
CARBONIC ANHYDRASE INHIBITORS ACETAZOLAMIDE E It is a sulfonamide derivative. It is a sulfonamide derivative. noncompetitively but reversible inhibits.
Diuretics From Diuresis to Clinical Use
DIURETICS Part 1 Prof. Hanan Hagar Pharmacology Unit.
CHAPTER © 2012 The McGraw-Hill Companies, Inc. All rights reserved. 25 Diuretics.
DIURETIC DRUGS (DR.Farooq Alam) DIURETIC DRUGS (DR.Farooq Alam)
DIURETICS Part 1 Prof. Hanan Hagar Pharmacology Department.
Prof. Hanan Hagar Pharmacology Department
Tambahkanlah Ilmuku dan Berilah aku pengertian dengan baik Tiada sia-sia Meraih Ilmu dan Mengamalkannya.
DIURETICS Diuretics are drugs which increase the excretion of sodium and water from the body by an action on the kidney. Their primary effect is to decrease.
DR. MOHD NAZAM ANSARI.  Some of pathological conditions associated with retention of sodium and water in the body e.g. Congestive Heart failure, Pulmonary.
Diuresis By Dr. Ola Mawlana.
Sodium Reabsorption, Diuretics, and Diet Vivek Bhalla, MD Division of Nephrology Stanford University School of Medicine September 14th, 2015.
Urinary system Designed by Pyeongsug Kim ©2010 Picture from
Vilasinee Hirunpanich B.Pharm(Hon), M.Sc In Pharm (Pharmacology)
DIURETICS How do they work? WHAT DO THEY DO? When do I use them? How do I use them?
Pharmacology – I [PHL 313] DiureticsDiuretics Dr. Hassan Madkhali Assistant Professor Department of Pharmacology E mail:
Mosby items and derived items © 2008, 2002 by Mosby, Inc., an affiliate of Elsevier Inc. Chapter 21 Diuretic Agents.
DIURETICS By: Prof. A. Alhaider 1433 H. Anatomy and Physiology of Renal system ► Remember the nephron is the most important part of the kidney which regulates.
Diuretic Agents.
Sodium Reabsorption, Diuretics, and Diet Vivek Bhalla, MD Division of Nephrology Stanford University School of Medicine September 14th, 2015.
DIURETICS By: Prof. A. Alhaider. Anatomy and Physiology of Renal system ► Remember the nephron is the most important part of the kidney that regulates.
DIURETICS SONG Hui OUTLINE BACKGROUND CLASSIFICATION OF DIURETICS REVIEW AND QUESTIONS.
What is high ceiling diuretic & Why?
Diuretics Clinical Conditions Requiring Diuretic Therapy: Cerebral Edema Cerebral Edema Pulmonary Edema Pulmonary Edema Hypertension Hypertension Congestive.
Diuretics (Saluretics). Diuretics increase urine excretion mainly by ↓ reabsorption of salts and water from kidney tubules These agents are ion transport.
MCQs from High yield areas of Diuretic Pharmacology
Diuretics. A. INHIBITING NaCl REABSORPTION: THIAZIDES: 1. Bendroflumethiazides 2. Benzthiazides 3. Polythiazide 4. Chlorothiazide 5. Quinethazone 6. Chlorthalidone.
AGENTS ACTING ON RENAL FUNCTION Dr.Sanjib Das MD.
Diuretic Agents. Carbonic Anhydrase Inhibitors.
Tubular Reabsorption and regulation of tubular reabsorption Tortora Ebaa M Alzayadneh, PhD.
Diuretic Agents.
Diuretics Blake Briggs, Class of 2017.
Kidney functions Kidny not only eleminate wastes …* * homeostatic organ. Water & electrolyte balance. Acid-base balance. Endocrine function(rennin for.
Sodium Channel Inhibitors
(Furosemide, Ethacrynic acid, Bumetanide and Torsemide) DIURETICS: LOOP DIURETICS (Furosemide, Ethacrynic acid, Bumetanide and Torsemide)
Diuretics (Saluretics)
Sodium Homeostasis Sodium is an electrolyte of major importance in the human body. It is necessary for : normal extracellular volume dynamics  Na in ECF.
Diuretics By S.Bohlooli, PhD.
Diuretic Drugs.
Diuretic Agents.
Ass. Prof. Dr. Naza M. Ali Lec G2 19 May 2019 G1 22 May 2019
Presentation transcript:

Diuretic Agents

Learning Objectives At the end of this session, you will be able to: Classify the diuretic agents Describe the mechanism of diuretic agents Demonstrate the pharmacological effects of typical diuretic agents Propose the rational clinical application

Three stages of urine forming A: Glomerular filtration B: Reabsorption in renal tubule C: Excretion in dismal and collecting tubule

Review of Kidney Function GFR = 130 ml min-1 Glomerular Filtration Rate  130ml /min, Normal urine production rate  1 ml/min, which indicates that 129/130 (>99%) of glomerular ultrafiltrate (filtered plasma, tubular fluid) is reabsorbed >99% of salt is reabsorbed >99% of H2O is reabsorbed Urine flow = 1 ml min-1

DIURETICS Diuretics are drugs which increase the excretion of sodium and water from the body by an action on the kidney. Their primary effect is to decrease the reabsorption of sodium and chloride from the filtrate, increase water loss being secondary to the increased excretion of salt.

Classification of Diuretic Agents 1. High-effective diuretics: Loop diuretics 2. Mid-effective diuretics: Thiazide diuretics 3. Low-effective diuretics: K+-sparing diuretics & CAIs According to the efficacy Loop diuretics: furosemide, ethacrynic acid Thiazides: hydrochlorothiazide, indapamide K+-sparing diuretics: spironolactone, amiloride and triamterene Carbonic anhydrase inhibitors: acetazolamide and dorzolamide Osmotic diuretics: Mannitol

Loop diuretic, 12ml/min=0.72L/h Excretion rates of typical diuretics, values observed at peak diuresis after a maximally effective dose Loop diuretic, 12ml/min=0.72L/h Normal urine production rate  1 ml/min

Nephron sites of action of diuretics

Mechanisms of Action: Loop diuretics No transport systems in descending loop of Henle Ascending loop contains Na+-K+-2Cl- cotransporter from lumen to ascending limb cells Inhibit Na+-K+-2Cl- transport system to reduce the reabsorption of NaCl in the thick ascending limb of the loop of Henle Inhibition of this transporter system leads to the reduction of K+ back diffusion into the tubular lumen, which reduces the lumen positive potential, and then causes an increase in Mg2+ and Ca2+ excretion

Loop Diuretics Furosemide Bumetanide Torsemide Ethacrynic acid

High efficacy diuretics Pharmacological effects: Diuresis Increase Ca2+ excretion Pharmacological kinetics: Onset in 5 min by i.v. ; 30 min by p.o. t 1/2=1h last for 4-6 h , even to 10h

CLINICAL APPLICATIONS OF LOOP DIURETICS EDEMA due to CHF, nephrotic syndrome or cirrhosis Acute heart failure with PULMONARY EDEMA HYPERCALCEMIA Accelerate the excretion of poisons

Adverse reaction Ototoxicity (ethacrynic acid> lasix> bumetanide) Disturbance of water and electrolyte Hyperuricemia Others toxicities: allergic reactions, nausea et al.

Thiazide Diuretics in the Distal Convoluted Tubule Less reabsorption of water and electrolytes in the distal convoluted tubule than proximal tubule or loop Thiazides block Na+-Cl- cotransporter

Thiazide Diuretics Hydrochlorothiazide Metolazone PTH=Parathyroid Hormone 甲状旁腺激素

Pharmacol-effects & Clinical uses Diuresis & Edema Anti-hypertension & Hypertension Decrease [Ca2+ ]in urine by increasing Ca2+ reabsorption & Idiopathic hypercalciuria or renal calculus Anti-diuretic effect & Nephrogenic diabetes insipidus - PDE , + cAMP, + permeability of H2O + NaCl excretion, - plasma osmotic pressure , - Thirsty feeling & drinking quantity

Adverse reactions be careful when use with digitalis. Hypokalemia --- Hyperlipidemia Hyperuricemia Hyperglycemia Allergic reactions

Low efficacy diuretics K+ sparing diuretics Agent: Antisterone, Triamterene & amiloride Action site: DCT & CT (Collecting Tubule)

Potassium-sparing diuretics Two cell types in collecting tubule Principal cells – transport Na +, K +, water Intercalated cells – secretion of H+ and HCO3 Blocking Na+ movement in also prevents K+ movement out

Spironolactone/ Antisterone Act as antagonists to aldosterone, competes with aldosterone for receptor sites in DCT Results in decreased Na+ reabsorption in DCT Promotes Na+ and water loss Decreased Na+ reabsorption balanced by K+ retention at this site (and H+). Used in combination with diuretic e.g.. frusomide

Clincal use Obstinate edema Congestive heart failure ADR Hyperkalemia, sex hormone-like effects

Triamterene and amiloride Take action on distal convoluted tubule and collecting tubule Block Na+ channel to decrease the reabsorption of Na+ Secondary to inhibit the excretion of K+ Not to antagonize the aldosterone

Carbonic anhydrase inhibitors CAIs work on cotransport of Na+, HCO3- and Cl- that is coupled to H+ countertransport Acts to block carbonic anhydrase (CA), CA converts HCO3- + H+ to H2O + CO2 in tubular lumen CO2 diffuses into cell (water follows Na+), CA converts CO2 + H2O into HCO3- + H+ H+ now available again for countertransport with Na+, etc Na+ and HCO3- now transported into peritubular capillary

Site of Action of CAIs

Carbonic Anhydrase Inhibitors Carbonic anhydrase inhibitors (acetazolamide) H2O + CO2 H+ + HCO3- Na+ CA reabsorption

Clinic uses: Glaucoma Cerebral edema Acute mountain sickness Urine basification Treatment of Metabolic Alkalosis

Adverse reaction Allergic reaction Metabolic Acidosis Urinary calculus Hypokalemia Others: drowsiness,feeling dysfunction, central nerve system toxicity,allergic reaction

Osmotic diuretics No interaction with transport systems All activity depends on osmotic pressure exerted in lumen Blocks water reabsorption in proximal tubule, descending loop, collecting duct Results in large water loss, smaller electrolyte loss  can result in hypernatremia

Dehydrant agents /osmotic diuretics Agents : Mannitol, 50% hypertonic Glucose Characteristics: no metabolism/freely filtrable/no reabsorpted Pharmacological effects and clinical uses: Hyperosmolarity Dehydration Diuresis

USMLE-type questions

Your 60 yr male hypertensive patient who had an MI three months ago is now showing signs of CHF. You therefore add spironolactone to his drug regimen. What side effect should you warm your patient about that is associated with this drug? A. gynecomastia B. hypokalemia C. lupus syndrome D. ototoxicity E. uricemia

A/gynecomastia is the correct answer A/gynecomastia is the correct answer. Spironolactone is a weak agonist at androgen receptors, as well as an aldosterone antagonist. His breasts may become slightly enlarged and tender.

A 70-Y-O woman is admitted to the emergency department because of a “fainting spell” at home. She appears to have suffered no trauma from her fall, but her BP is 120/60 when lying down and 60/20 when she sits up. Neurologic examination and an ECG are within normal limits when she is lying down. Questioning reveals that she has recently started taking diuretics for a heart condition. Which of the following drugs is the most likely cause of her fainting spell? Acetazolamide Amiloride Furosemide Hydrochlorothiazide Spironolactone