Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012, 16.5.2012.

Slides:



Advertisements
Similar presentations
Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Ponderomotive Squeezing & Opto-mechanics Adam Libson and Thomas Corbitt GWADW 2015 G
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
What are GW’s ?? Fluctuation in the curvature of space time, propagating outward form the source at the speed of light Predicted by Einstein’s GTR Gravitational.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experiments towards beating quantum limits Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Enhanced LIGO with squeezing: Lessons Learned for Advanced LIGO and beyond.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
LIGO-G R Quantum Noise in Gravitational Wave Interferometers Nergis Mavalvala PAC 12, MIT June 2002 Present status and future plans.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Optical Spring Experiments With The Glasgow 10m Prototype Interferometer Matt Edgar.
PONDEROMOTIVE ROTATOR: REQUIREMENTS Zach Korth (Caltech) – GWADW ‘12 – Waikoloa, HI.
GEO Status and Prospects Harald Lück ILIAS / ETmeeting Cascina November 2008.
Opening our eyes to QND technical issues (workshop and open forum) “It’ll be the blind leading the blind” - Stan Whitcomb “You can see a lot by looking”
White light Cavities University of Florida LIGO-G Z Stacy Wise, Guido Mueller, David Reitze, D.B. Tanner, California Institute of Technology April.
Optomechanics Experiments
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
H1 Squeezing Experiment: the path to an Advanced Squeezer
Interferometer configurations for Gravitational Wave Detectors
Detuned Twin-Signal-Recycling
Roman Schnabel for the AEI-Division Karsten Danzmann
Quantum Opportunities in Gravitational Wave Detectors
New directions for terrestrial detectors
Overview of quantum noise suppression techniques
The Quantum Limit and Beyond in Gravitational Wave Detectors
Progress toward squeeze injection in Enhanced LIGO
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
Yet another SQL? Tobias Westphal
MIT Corbitt, Goda, Innerhofer, Mikhailov, Ottaway, Pelc, Wipf Caltech
Generation of squeezed states using radiation pressure effects
Quantum optomechanics: possible applications to
Quantum noise reduction techniques for the Einstein telescope
Homodyne readout of an interferometer with Signal Recycling
Quantum Noise in Gravitational Wave Interferometers
Heterodyne Readout for Advanced LIGO
Quantum effects in Gravitational-wave Interferometers
Nergis Mavalvala Aspen February 2004
Homodyne or heterodyne Readout for Advanced LIGO?
Australia-Italy Workshop October 2005
Advanced LIGO Quantum noise everywhere
Quantum Optics and Macroscopic Quantum Measurement
Squeezed states in GW interferometers
Quantum studies in LIGO Lab
Heterodyne Readout for Advanced LIGO
LIGO Quantum Schemes NSF Review, Oct
“Traditional” treatment of quantum noise
Squeezed Input Interferometer
A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon
Squeezed Light Techniques for Gravitational Wave Detection
RF readout scheme to overcome the SQL
Advanced Optical Sensing
Presentation transcript:

Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,

Henning Kaufer Radiation pressure noise 2 Ligo Livingston Advanced LIGO anticipated strain sensitivty A limiting factor for low frequencies Often referred to as back-action noise Next generation detectors will observe back-action noise Is it observeable with tabletop experiments? Radiation pressure noise Shot noise

Henning Kaufer Opto-mechanics Transfer of photon momentum 3 T.J. Kippenberg and K.J. Vahala, Science 321, 1172 (2008) 40 nm thickness m eff = 80 ng Q factor = f res = 100 kHz R = nm (refractive index + ethalon effect) Standard approach: Build Cavity 1.5 mm

Henning Kaufer Michelson-Sagnac interferometer 4 SIN membrane used as common end-mirror Recycling mirror in interferometer output No drawback from low power reflectivity Laser noise rejection

Henning Kaufer Experimental setup 5 Setup features -Arm length = 6 cm -0.5 “ Optics and piezos -Double seismic isolation -Operated at mbar -Remote control for alignment InputOutput

Henning Kaufer Currently limited by thermal noise 6

Henning Kaufer Quantum noise 7 Cryogenic cooling and signal recycling R sr = 99,97 % K. Yamamoto et al, Phys. Rev. A 81, (2010)

Henning Kaufer Ponderomotive squeezing 8 Requires homodyne readout (Read out phase quadrature) mW input power Amplitude Phase fluctuation Membrane acts as coupling device Calculation : H. Miao

Henning Kaufer Balanced homodyne read out (no recycling) 9

Henning Kaufer With recycling mirror : Induced oscillations 10 Cavity operated with R sr = 99,97 % Optical linewidth = 30 kHz Stable and Anti-stable behavior Induced parametric (de-) amplification of Membrane motion

Henning Kaufer Optical cooling 11 Spectra obtained with DC read out Only slightly improved displacement sensitivty Unknown noise background (most propably laser frequency noise) Changed oscillator parameters, Calculated T eff = 7 K and Q eff = 4500 With R sr = 99 % and P in = 100 mW

Henning Kaufer Questions? Thank you for your attention 12

Henning Kaufer Dissipative opto-mechanics 13 Usual idea: use cavity and detune Supress lower sideband E ph = hf Require : l opt << f mech For strong cooling Dissipative cooling Require system with