In this section you will:

Slides:



Advertisements
Similar presentations
Uniform circular motion: examples include
Advertisements

7.1 Characteristics of Uniform Circular Motion Objectives
Uniform Circular Motion
An object moving in uniform circular motion is moving in a circle with a constant speed. uniform: not changing in form or character; remaining the same.
Centrifugal and Centripetal Force. Centripetal versus centrifugal force Centripetal is an inward seeking force while centrifugal force is an outward pulling.
UNIFORM CIRCULAR MOTION THE MOTION OF AN OBJECT moving IN A CIRCLE AT CONSTANT SPEED Average speed= distance/time=arc/time = =  *R/time=2  R/T(period)
Uniform Circular Motion. Answer Me!!!!  Newton’s Laws state that an object in motion will stay at the same velocity until acted upon by an unbalanced.
Circular Motion Level 1 Physics. What you need to know Objectives Explain the characteristics of uniform circular motion Derive the equation for centripetal.
Week.  Student will: centripetal accelerationcentripetal force  Solve problems involving centripetal acceleration and centripetal force.
Circular Motion. Speed/Velocity in a Circle Consider an object moving in a circle around a specific origin. The DISTANCE the object covers in ONE REVOLUTION.
Chapter 7: Circular Motion and Gravitation
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 5: Uniform Circular Motion Chapter Goal: To learn how to solve.
Circular Motion and Other Applications of Newton’s Laws
Rotational Motion = Uniform Circular Motion r r v2v2 v1v1 7v7v 2 2 a b Chord ab c d e f Using similar triangles abc def Where r is.
Motion in Two Dimension
Circular and Centripetal Motion
Acceleration is equal to Δv/Δt. Velocity is a vector and there are two ways a vector can be changed: by changing magnitude or by changing direction.
Circular Motion; Gravitation
Centripetal Force and Acceleration Unit 6, Presentation 1.
ROTATIONAL MOTION Uniform Circular Motion
Circular Motion. Uniform Circular Motion Motion of an object at constant speed along a circular path.
Dynamics of Uniform Circular Motion
Centripetal Motion Motion towards the center of a circle.
Uniform Circular Motion. What is uniform circular motion? 4 Movement of an object at constant speed around a circle with a fixed radius 4 Can the velocity.
Circular Motion Chapter 9. Circular Motion Axis – is the straight line around which rotation takes place. Internal Axis - is located within the body of.
Circular Motion. The Radian Objects moving in circular (or nearly circular) paths are often measured in radians rather than degrees. In the diagram, the.
7-3 Circular Motion. As an object travels in uniform circular motion Its tangential speed remains constant The direction of its velocity is constantly.
Objectives  Explain why an object moving in a circle at a constant speed is accelerated.  Describe how centripetal acceleration depends upon the object’s.
Circular Motion. Uniform Circular Motion Speed of object may be constant Velocity is constantly changing Direction of the velocity is tangent to the circle.
Round and round… Circular Motion. Circular Velocity If this is true, why does ANYTHING move in a circle? How do we define VELOCITY? What ‘d’ are we talking.
Centripetal Acceleration is a vector quantity because it has both direction and magnitude. Centripetal Acceleration is defined as an acceleration experienced.
Circular motion Objectives: understand that acceleration is present when the magnitude of the velocity, or its direction, or both change; understand that.
C HAPTER 7 Circular motion. C IRCULAR MOTION Uniform circular motion can be described as the motion of an object in a circle at a constant speed. As an.
CIRCULAR MOTION. WHAT IS UNIFORM CIRCULAR MOTION The motion of an object in a circle at constant speed. However, direction and therefore velocity are.
Circular motion.
MAIN IDEA An object in circular motion has an acceleration toward the circle’s center due to an unbalanced force toward the circle’s center. Essential.
Circular Motion Uniform circular motion: examples include Objects in orbit (earth around the sun Driving a car around a corner Rotating a ball around on.
Circular Motion Section 7.3
Circular Motion. PhET Lady Bug Motion Think about this Click “Show Both” at the top, and “Circular” at the bottom Watch the following and comment: Which.
Circular Motion = the movement of an object at constant speed around a circle with fixed radius Axis – straight line around which rotation takes place.
Circular Motion. Uniform Circular Motion  An object that moves in a circle at a constant speed, v.  The magnitude of the velocity remains the same but.
PRINCIPLES OF PHYSICS Circular Motion. When an object moves in a circle its path is described by: Radius (r) – distance from the center to the perimeter.
C H A P T E R 5 Dynamics of Uniform Circular Motion.
Dynamics of Uniform Circular Motion Uniform Circular Motion Centripetal Acceleration Centripetal Force Satellites in Circular Orbits Vertical Circular.
Circular Motion Chapter 7.3. Motion & Forces What you already know: –Velocity – a measure of the change in over with. –Mass – A measure of the amount.
Unit 6: Circular Motion Consider a Ferris wheel. ◦ The cars are in circular motion because they revolve about a single axis. ◦ The line about which the.
EQ: Why does an object in circular motion have a constant velocity yet an acceleration and unbalanced force that is directed toward the center of the circle?
Circular Motion and Other Applications of Newton’s Laws
Circular Mtotion In physics, circular motion is rotation along a circle: a circular path or a circular orbit. It can be uniform, that is, with constant.
Section 5-2 Circular Motion; Gravitation. Objectives: The student will be able to: identify the type of force supplying the centripetal force that acts.
Physics Section 7.1 Define and apply circular motion What is circular motion? Any object that revolves about.
Circular Motion. The Radian Objects moving in circular (or nearly circular) paths are often measured in radians rather than degrees. In the diagram, the.
Circular Motion Chapter 7.3. Motion & Forces What you already know: –Velocity – a measure of the change in displacement (distance with direction. –Mass.
Circular Motion Chapter 7 Section 1. What are we discussing today? Circular motion Centripetal acceleration & Centripetal force Tangential Speed You will.
Brain Teaser I wish tomorrow was yesterday so today would be Friday. What day is it?
C IRCULAR M OTION Section 6.2 Pg O BJECTIVES Explain why an object moving in a circle at constant speed is accelerating. Describe how centripetal.
Dynamics of Uniform Circular Motion  An object moving on a circular path of radius r at a constant speed, V  Motion is not on a straight line, the direction.
Aim: How can we describe circular motion? Circular Motion.
Uniform Circular Motion. 4 dXxQ7o dXxQ7o.
Uniform circular motion Uniform circular motion is motion along a circular path in which there is no change in speed, only a change in direction. v.
Circular Motion 6.2 In this section you will:
Circular Motion 6.2 In this section you will:
Centripetal Force and Acceleration
Uniform Circular Motion
Circular Motion.
Circular Motion Uniform circular motion: examples include
In this section you will:
Uniform Circular Motion
Centrifugal force It does not exist!.
Motion in a Circle.
Presentation transcript:

In this section you will: Explain why an object moving in a circle at a constant speed is accelerated. Describe how centripetal acceleration depends upon the object’s speed and the radius of the circle. Identify the force that causes centripetal acceleration. Section 6.2-1

Suppose that you were driving a car with the steering wheel turned in such a manner that your car followed the path of a perfect circle with a constant radius. And suppose that as you drove, your speedometer maintained a constant reading of 10 mi/hr. In such a situation as this, the motion of your car could be described as experiencing uniform circular motion. Uniform circular motion is the motion of an object in a circle with a constant or uniform speed.   Section 6.2-3

The distance of one complete cycle around the perimeter of a circle is known as the circumference. With a uniform speed of 5 m/s, a car could make a complete cycle around a circle that had a circumference of 5 meters. At this uniform speed of 5 m/s, each cycle around the 5-m circumference circle would require 1 second. At 5 m/s, a circle with a circumference of 20 meters could be made in 4 seconds; and at this uniform speed, every cycle around the 20-m circumference of the circle would take the same time period of 4 seconds

Circumference = 2*pi*Radius

The Direction of the Velocity Vector Objects moving in uniform circular motion will have a constant speed. But does this mean that they will have a constant velocity? The direction of the velocity vector is directed in the same direction that the object moves. Since an object is moving in a circle, its direction is continuously changing.

Acceleration As mentioned, an object moving in uniform circular motion is moving in a circle with a uniform or constant speed. The velocity vector is constant in magnitude but changing in direction. Therefore the object is accelerating in a circular motion path.

The Centripetal Force Requirement As mentioned earlier, an object moving in a circle is experiencing an acceleration. Even if moving around the perimeter of the circle with a constant speed, there is still a change in velocity and subsequently an acceleration. This acceleration is directed towards the center of the circle. And in accord with Newton's second law of motion, an object which experiences an acceleration must also be experiencing a net force. The direction of the net force is in the same direction as the acceleration. So for an object moving in a circle, there must be an inward force acting upon it in order to cause its inward acceleration. This is sometimes referred to as the centripetal force requirement. The word centripetal (not to be confused with the F-word centrifugal) means center seeking. For object's moving in circular motion, there is a net force acting towards the center which causes the object to seek the center.

Centripetal Acceleration The acceleration of an object moving in a circle is always in the direction of the net force acting on it, there must be a net force toward the center of the circle. This force can be provided by any number of agents. When an Olympic hammer thrower swings the hammer, the force is the tension in the chain attached to the massive ball. Section 6.2-7

Centripetal Acceleration When an object moves in a circle, the net force toward the center of the circle is called the centripetal force. To analyze centripetal acceleration situations accurately, you must identify the agent of the force that causes the acceleration. Then you can apply Newton’s second law for the component in the direction of the acceleration in the following way. Section 6.2-8

Newton’s Second Law for Circular Motion Centripetal Acceleration Newton’s Second Law for Circular Motion The net centripetal force on an object moving in a circle is equal to the object’s mass times the centripetal acceleration. Section 6.2-9

Centripetal Acceleration When solving problems, it is useful to choose a coordinate system with one axis in the direction of the acceleration. For circular motion, the direction of the acceleration is always toward the center of the circle. Section 6.2-10

Centripetal Acceleration Rather than labeling this axis x or y, call it c, for centripetal acceleration. The other axis is in the direction of the velocity, tangent to the circle. It is labeled tang for tangential. Centripetal force is just another name for the net force in the centripetal direction. It is the sum of all the real forces, those for which you can identify agents that act along the centripetal axis. Section 6.2-11

A Nonexistent Force According to Newton’s first law, you will continue moving with the same velocity unless there is a net force acting on you. The passenger in the car would continue to move straight ahead if it were not for the force of the car acting in the direction of the acceleration. Section 6.2-12

A Nonexistent Force The so-called centrifugal, or outward force, is a fictitious, nonexistent force. Section 6.2-13

Question 1 Explain why an object moving in a circle at a constant speed is accelerating. Section 6.2-14

Answer 1 Acceleration is the rate of change of velocity, the object is accelerating due to its constant change in the direction of its motion. Section 6.2-15

Question 2 What is the relationship between the magnitude of centripetal acceleration (ac) and an object’s speed (v)? A. B. C. D. Section 6.2-16

Answer 2 Reason: From the equation for centripetal acceleration: Centripetal acceleration always points to the center of the circle. Its magnitude is equal to the square of the speed divided by the radius of the motion. Section 6.2-17

Question 3 What is the direction of the velocity vector of an accelerating object? A. toward the center of the circle B. away from the center of the circle C. along the circular path D. tangent to the circular path Section 6.2-18

Answer 3 Reason: While constantly changing, the velocity vector for an object in uniform circular motion is always tangent to the circle. Vectors are never curved and therefore cannot be along a circular path. Section 6.2-19

Sample Problem #1 A 900-kg car moving at 10 m/s takes a turn around a circle with a radius of 25.0 m. Determine the acceleration and the net force acting upon the car. Known Information: m = 900 kg v = 10.0 m/s R = 25.0 m Requested Information: a = ???? Fnet = ????

To determine the acceleration of the car, use the equation a = v2 / R. The solution is as follows: a = v2 / R a = (10.0 m/s)2 / (25.0 m) a = (100 m2/s2) / (25.0 m) a = 4 m/s2 To determine the net force acting upon the car, use the equation Fnet = m•a. The solution is as follows. Fnet = m • a Fnet = (900 kg) • (4 m/s2) Fnet = 3600 N

Sample Problem #2 A 95-kg halfback makes a turn on the football field. The halfback sweeps out a path that is a portion of a circle with a radius of 12-meters. The halfback makes a quarter of a turn around the circle in 2.1 seconds. Determine the speed, acceleration and net force acting upon the halfback. Known Information: m = 95.0 kg R = 12.0 m Traveled 1/4-th of the circumference in 2.1 s Requested Information: v = ???? a = ???? Fnet = ????

To determine the speed of the halfback, use the equation v = d / t where the d is one-fourth of the circumference and the time is 2.1 s. The solution is as follows: v = d / t v = (0.25 • 2 • pi • R) / t v = (0.25 • 2 • 3.14 • 12.0 m) / (2.1 s) v = 8.97 m/s To determine the acceleration of the halfback, use the equation a = v2 / R. The solution is as follows: a = v2 / R a = (8.97 m/s)2 / (12.0 m) a = (80.5 m2/s2) / (12.0 m) a = 6.71 m/s2 To determine the net force acting upon the halfback, use the equation Fnet = m•a. The solution is as follows. Fnet = m*a Fnet = (95.0 kg)*(6.71 m/s2) Fnet = 637 N