Experimental investigation of dynamic Photothermal Effect

Slides:



Advertisements
Similar presentations
Photon absorption Local heating Thermal expansion INFN-LENS T2 Braginsky et al., Phys. Lett. A 264, 1 (1999) Cerdonio et al., Phys. Rev. D 63, (2001)
Advertisements

ILIAS 5-6/11/2004 WG T2 Task T2 (WG 11) AIM: exact definition (theoretical and experimental) of photo-thermal noise PARTICIPANTS INFN (AURIGA group; also.
Task M2 – Advanced Materials and Techniques for Resonant Detectors Motivation : Reduce thermal noise contribution to the acoustic detector noise budget.
T3 considers two aspects of the thermal noise The problem of the interrogation area of the test mass. Small interrogation area means large fluctuations.
Nawrodt 10/07 #1/21 R. Nawrodt, A. Schröter, C. Schwarz, D. Heinert, M. Hudl, W. Vodel, A. Tünnermann, P. Seidel STREGA Meeting Tübingen 10/
April 27th, 2006 Paola Puppo – INFN Roma ILIAS Cryogenic payloads and cooling systems (towards a third generation interferometer) part II: the Vibration.
Work Package 4: Development of low loss dielectric coatings for advanced detectors Scientific motivation: Mechanical dissipation from dielectric mirror.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
An optomechanical transducer for the AURIGA “bar” gw detector cryogenic optics towards the quantum limit: high finesse cavities, fibers, piezo actuators,
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Alban REMILLIEUX3 rd ILIAS-GW Annual General Meeting. London, October 26 th -27 th, New coatings on new substrates for low mechanical loss mirrors.
Optical readout for a resonant gw bar. Old setup.
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
CNRS LKB – Task T1 Current status of the experiment on optomechanical coupling Sensitivity: 5.10  20 m.Hz  1/2   New high-finesse, high-power cavity.
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
Thermal noise from optical coatings Gregory Harry Massachusetts Institute of Technology - on behalf of the LIGO Science Collaboration - 25 July
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
R&D activities in Florence Geppo Cagnoli INFN and U. of Glasgow WG2 & WG3 Meeting – 27 th Apr Firenze.
A new facility for thermal conductivity measurements Filippo Martelli Univ. of Urbino and INFN Florence GWADW 2006 – 27/5-02/ – La Biodola.
JRA3 STREGA - Introduction Geppo Cagnoli IGR – University of Glasgow ILIAS-GW Meeting, Orsay, 5 th -6 th Nov 2004.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, H. Armandula 3, R. Bassiri 1, E. Chalkley 1 C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Flat-Top Beam Profile Cavity Prototype
Cascaded Solid Spaced Filters for DWDM applications
Task M2 – Working group Auriga-LNL Operation temperature KOperation temperature K Mechanical Attenuation >180dB in the frequency range.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
Stability and Dynamics in Fabry-Perot cavities due to combined photothermal and radiation-pressure effects Francesco Marino 1, Maurizio De Rosa 2, Francesco.
R&D on thermal noise in Europe: the STREGA Project Geppo Cagnoli University of Glasgow AMALDI 6 – Okinawa - Japan June
Francesco Cottone INFN & Physics Departments of Perugia, Pisa, Florence (Collaboration Work under VIRGO Project) Thermomechanical properties of silicon.
ILIAS - GWA N5 - Strega JRA3 General Meeting Orsay - November 5th-6th, 2004 M1 Activities.
Chunnong Zhao for ACIGA
Parametric Instabilities In Advanced Laser Interferometer Gravitational Wave Detectors Li Ju Chunnong Zhao Jerome Degallaix Slavomir Gras David Blair.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Elba 2006 Suppressing Parametric Instabilities Li Ju, Slawek Gras, Pablo Barriga, Chonnong Zhao, Jerome Degallaix, David Blair, Yaohui Fan, Zewu Yan University.
Sapphire for the LCGT project Eiichi Hirose ICRR, University of Tokyo Kyohei Watanabe, Norikatsu Mio PSC, University of Tokyo GT Advanced Technology, Sep.
ACIGA High Optical Power Test Facility
G R LIGO’s Ultimate Astrophysical Reach Eric Black LIGO Seminar April 20, 2004 Ivan Grudinin, Akira Villar, Kenneth G. Libbrecht.
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
Task T2 – Measurement of photo-elastic noise Goals: - observation of photo-elastic effects - dependence with temperature down to a few K - dependence with.
Some Ideas on Coatingless all-reflective ITF Adalberto Giazotto (*) INFN- Pisa (*) Work done in collaboration with G. Cella.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September Genoa 1 Investigation.
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, E. Chalkley 1, H. Armandula 3, R. Bassiri 1, C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Measurement of coating mechanical loss Junko Katayama, K.Craig, K.Yamamoto, M.Ohashi ICRR 0.
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
The Proposed Holographic Noise Experiment Rainer Weiss, MIT On behalf of the proposing group Fermi Lab Proposal Review November 3, 2009.
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
STREGA WP4 coating development GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz Current status of the bulk.
Loss measurements in bulk materials
Michele Punturo WP3 meeting, Cascina 9-July-2004
The Proposed Holographic Noise Experiment
Thermal noise calculations for cryogenic optics
Greg Ogin, Eric Black, Eric Gustafson, Ken Libbrecht
Thermal noise reduction through LG modes
New Results on Photothermal Effect: Size and Coating Effect
Flat-Top Beam Profile Cavity Prototype: design and preliminary tests
3rd generation ITF sensitivity curve
T3 DEVELOPMENT OF SELECTIVE READOUT SCHEMES
A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon
Science, 2010, 330, Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok,
Flat-Top Beam Profile Cavity Prototype
Pierre Favier Laboratoire de l’Accélérateur Linéaire
Sensitivity curves beyond the Advanced detectors
Presentation transcript:

Experimental investigation of dynamic Photothermal Effect M. De Rosa INOA, LENS, INFN F. Marin University of Florence, LENS, INFN F. Marino INFN O. Arcizet, M. Pinard, A. Heidmann Laboratoire Kastler Brossel, Paris ILIAS STREGA T2 – 2005 Meeting Palma de Mallorca

Photothermal effect Photon absorption  Local heating Thermal expansion Depends on: laser power impinging on the mirrors absorption coefficient material: - thermal expansion - thermal conductivity and capacitance temperature (through the above parameters) mirror size and shape/suspension beam waist detection frequency

Photothermal effect Photon absorption  Local heating Thermal expansion Depends on: laser power impinging on the mirrors absorption coefficient material: - thermal expansion - thermal conductivity and capacitance temperature (through the above parameters) mirror size and shape/suspension beam waist detection frequency

Mirror  half space approximation Braginsky et al., Phys. Lett. A 264, 1 (1999) Cerdonio et al., Phys. Rev. D 63, 082003 (2001) dL = L0 K(w/wc)  1/W a: thermal expansion coefficient s: Poisson ratio k: thermal conductivity cs: volumetric thermal capacitance w: beam waist

Mirror  half space approximation Braginsky et al., Phys. Lett. A 264, 1 (1999) Cerdonio et al., Phys. Rev. D 63, 082003 (2001) dL = L0 K(w/wc) Logarithmic divergence ! Size effects? Coatings ? a: thermal expansion coefficient s: Poisson ratio k: thermal conductivity cs: volumetric thermal capacitance w: beam waist

Calculated nc (Hz) Fused silica Sapphire w/2 300K 1K 300K 1K 10mm 0.0015 4.8 0.02 19000 0.1mm 15 48000 200 1.9·108 Cut-off depending on the mirror shape and suspension (heat dispersion Large timescale and size spread  necessity of accurate and verified model over a complete frequency range)

Reference cavity

Probed Cavities Mirrors substrate: Fused Silica Coatings: SiO2/Ta2O5

Long cavity a) half-infinite mirror b) finite size effects c) coating effect

High frequency: coating effect IMPROVED MODEL High frequency: coating effect One-dimensional model K = KFS + Kcoat Low frequency: finite size effect

Short cavity Frequency scaling with waist as predicted Phase at high frequency: to be improved (coating depth comparable with waist)

Setup of high-finesse cavities Mirrors made by J.M. Mackowski Input mirror T = 20 ppm, total losses < 10 ppm Compact cavity: L = 0.2 mm Cavity finesse = 230 000, input power > 3 mW

Test at cryogenic temperature Cavity assembled in copper rings for thermal conductivity Cryogenic facility with mechanical isolation from the helium tank Observation of first optical resonances at low temperature

Upgrade of a bar with optical readout for cryogenic operation

Conclusions beam waist dependence of cut-off frequency is verified finite size effects at low frequency coating effects at high frequency improvement of the half-infinite mirror model including finite size and coating effect (material properties) low-temperature setups under construction mirrors based on a silicon wafer currently being coated at the Laboratoire des Matériaux Avancés in Lyon

Solving the windmills noise problem...