Einstein gravitational wave Telescope Which optical topologies are suitable for ET? Andreas Freise for the ET WG3 working group 15.07.2009 MG12 Paris.

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham GWADW, ELBA, May 2008 Virtual Interferometry for future GW detectors.
Design study for 3rd generation interferometers Work Package 1 Site Identification Jo van den Brand
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
ET – THE Einstein telescope INSTRUMENTAL ASPECTS
LIGO-G W Is there a future for LIGO underground? Fred Raab, LIGO Hanford Observatory.
1st ET General meeting, Pisa, November 2008 The ET sensitivity curve with ‘conventional‘ techniques Stefan Hild and Andreas Freise University of Birmingham.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Towards a Design Study Proposal for a 3rd Generation Interferometric Gravitational- wave Detector Harald Lück London, October 26th 2006.
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
Modeling beam and mirror distortions using modal models: FINESSE V.1 Charlotte Bond, Daniel Brown and Andreas Freise Tokyo Institute of Technology 21/06/2013.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
Quantum Noise Measurements at the ANU Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Sheila Dwyer, Ben Buchler, Ping Koy Lam, Daniel Shaddock, and David.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
What are GW’s ?? Fluctuation in the curvature of space time, propagating outward form the source at the speed of light Predicted by Einstein’s GTR Gravitational.
Andreas Freise ILIAS WG1 Meeting CERN (29-Mar-07) GEO 600 Simulation Group.
Einstein gravitational wave Telescope Next steps: from technology reviews to detector design Andreas Freise for the ET WG3 working group , 2nd.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
Experimental test of higher-order LG modes in the 10m Glasgow prototype interferometer B. Sorazu, P. Fulda, B. Barr, A. Bell, C. Bond, L. Carbone, A. Freise,
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
Advanced VIRGO WG1: Status VIRGO, Cascina Andreas Freise University of Birmingham.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
S. ChelkowskiSlide 1ET Meeting, Hannover 01/2009.
Topology comparison RSE vs. SAGNAC using GWINC S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. ChelkowskiSlide 1ET Workshop, Erice, 10/2009.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
AIC: Activity report K.A. Strain MIT July 2007 G R.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
S. ChelkowskiSlide 1LSC Meeting, Amsterdam 09/2008.
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Comparison of Laser Interferometry and Atom Interferometry for Gravitational Wave Observations in Space Peter L. Bender JILA, University of Colorado Boulder.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Fundamental Physics, Astrophysics and Cosmology with ET p1 Michele Punturo on behalf of the ET team GA # A short introduction to the project.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Advanced Virgo: Optical Simulation and Design Advanced Virgo review Andreas Freise for the OSD Subsystem.
A. Freise1 Phase and alignment noise in grating interferometers Andreas Freise QND Meeting, Hannover
The Status of Advanced LIGO: Light at the end of the Tunnels Jeffrey S. Kissel, for the LIGO Scientific Collaboration April APS Meeting, Savannah, GA April.
ALIGO 0.45 Gpc 2014 iLIGO 35 Mpc 2007 Future Range to Neutron Star Coalescence Better Seismic Isolation Increased Laser Power and Signal Recycling Reduced.
GSFC  JPL Laser Interferometer Space Antenna (LISA) Time-Delay Interferometry with Moving Spacecraft Arrays Massimo Tinto Jet Propulsion Laboratory, California.
LOGO Gravitational Waves I.S.Jang Introduction Contents ii. Waves in general relativity iii. Gravitational wave detectors.
G. Cella I.N.F.N. Sezione di Pisa.  The mass density fluctuates..... ..... and the gravitational field will do the same Direct gravitational coupling.
Harald Lück AEI Hannover. Thank you Science Team! You did a great job!
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
Yoichi Aso Columbia University, New York, NY, USA University of Tokyo, Tokyo, Japan July 14th th Edoardo Amaldi Conference on Gravitational Waves.
Interferometer configurations for Gravitational Wave Detectors
Peter Beyersdorf TAMA300 Results from the Stanford 10m all-reflective polarization Sagnac interferometer Peter Beyersdorf TAMA300.
Detuned Twin-Signal-Recycling
Current and future ground-based gravitational-wave detectors
Topology comparison RSE vs. SAGNAC using GWINC
The Search for Gravitational Waves with Advanced LIGO
Overview of quantum noise suppression techniques
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
Is there a future for LIGO underground?
Quantum noise reduction techniques for the Einstein telescope
A. Bramati M. Romanelli E. Giacobino
Thermal noise reduction through LG modes
Homodyne readout of an interferometer with Signal Recycling
Mach-Zehnder atom interferometer with nanogratings
RF readout scheme to overcome the SQL
Advanced Optical Sensing
The ET sensitivity curve with ‘conventional‘ techniques
Presentation transcript:

Einstein gravitational wave Telescope Which optical topologies are suitable for ET? Andreas Freise for the ET WG3 working group MG12 Paris

A. FreiseA Freise MG12 15/07/2009Slide 2  How will ET look like?  How many interferometers per site?  What type of interferometer do we need?  Investigating new topologies  Practical considerations Overview The working group WP3 must select an interferometer topology for ET, we will present examples from the ongoing research:

A. FreiseA Freise MG12 15/07/2009Slide 3 What will be the shape of ET?

A. FreiseA Freise MG12 15/07/2009Slide 4 L L 45° Fully resolve polarizations 5 end caverns 4×L long tunnels 45° stream generated by virtual interferometry Null stream Redundancy 7 end caverns 6×L long tunnels 60° L’=L/sin(60°)=1.15×L Fully resolve polarizations by virtual interferometry Null stream Redundancy 3 end caverns 3.45×L long tunnels L Equivale nt to [Ruediger et al (1985), Freise et al, Class. Quantum Grav. 26 (2009)]

A. FreiseA Freise MG12 15/07/2009Slide 5 Multiple Interferometers: the Triangle Both solutions have an integrated tunnel length of 30 km, they can resolve both GW polarisations, feature redundant interferometers and have equivalent sensitivity. The triangle reduces the number of end stations and the enclosed area! [P Jaranowski et al, Phys Rev D ]

A. FreiseA Freise MG12 15/07/2009Slide 6 Today's Michelsons in a Triangle [S Hild]

A. FreiseA Freise MG12 15/07/2009Slide 7 How Many Interferometers Arms per Tunnel? Picture by Jason Bacon used under a Creative Commons License Rüdiger, Aspen 2007

A. FreiseA Freise MG12 15/07/2009Slide 8 Multiple Interferometers: a Xylophone Low power (no thermal effects), cooled, long suspensions High power, squeezing, LG modes, room temperature, `normal' suspensions Maybe we can reach the target sensitivity easier by splitting the frequency range? [S Hild et al, arXiv: ]

A. FreiseA Freise MG12 15/07/2009Slide 9 Reduction of Quantum Noise [S. Hild et al, arxiv: ]arxiv:

A. FreiseA Freise MG12 15/07/2009Slide 10 Quantum Noise Reduction Optimised SR [H. Rehbein und H. Mueller-Ebhardt, ET note ET ] [S Chelkowski]

A. FreiseA Freise MG12 15/07/2009Slide 11 Quantum Noise Reduction 10dB frequency-dependent squeezing [H. Rehbein und H. Mueller-Ebhardt, ET note ET ] [S Chelkowski]

A. FreiseA Freise MG12 15/07/2009Slide 12 Quantum Noise Reduction Variational output and 10 dB squeezing [H. Rehbein und H. Mueller-Ebhardt, ET note ET ]

A. FreiseA Freise MG12 15/07/2009Slide 13 Quantum Noise Reduction Sagnac with SR, variational output and 10dB squeezing [H. Rehbein und H. Mueller-Ebhardt, ET note ET ] [S Chelkowski]

A. FreiseA Freise MG12 15/07/2009Slide 14 Several QND topologies seem feasible:  Micheslon with SR, variational output, squeezing  Sagnac or Mach Zehnder Interferometer with SR, …  Optical bars, optical levers, double optical spring, … All can be build using the L-shape form factor! QND Topologies Optical Lever

A. FreiseA Freise MG12 15/07/2009Slide 15 Additional noise couplings: For Example: The Sagnac topology Non-zero area SagnacNear-zero area Sagnac

A. FreiseA Freise MG12 15/07/2009Slide 16 Sagnac effect in ET Analysis involves two effects 1.Static effects due to Earth’s rotation  Much more sensitive than current Laser gyros 2.Noise couplings Frequency noise Seismic noise Beam jitter noise [S. Chelkowski, talk at WP3 meeting 01/2009]

A. FreiseA Freise MG12 15/07/2009Slide 17 Example: Seismic noise Non-zero area Sagnac requirements on lateral mirror motion: Zero area Sagnac requirements: [S. Chelkowski, talk at WP3 meeting 01/2009]

A. FreiseA Freise MG12 15/07/2009Slide 18 Practical Considerations: Example, Beam Size

A. FreiseA Freise MG12 15/07/2009Slide 19  Interferometer topology selection will be driven by the quantum noise reduction scheme  All topologies can be build as an L-shape  We can assemble 3 L-shapes efficiently as a triangle  Multiple interferometers per site are beneficial for the sensitivity, yield redundancy and robust data analysis methods (null streams)  Technical details and noise couplings need to be investigated further before a topology can be selected Conclusion

A. FreiseA Freise MG12 15/07/2009Slide 20 …end