Image: Toward high-resolved hydrodynamic Simulations of Supernova remnants such as Cas A, Tycho.. Masaomi Ono.

Slides:



Advertisements
Similar presentations
(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Advertisements

Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Suzaku Discovery of Fe K-Shell Line from the O-rich SNR G Arxiv: Fumiyoshi Kamitukasa et al.
Diffusive shock acceleration & magnetic field amplification Tony Bell University of Oxford Rutherford Appleton Laboratory SN1006: A supernova remnant 7,000.
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
October 10, 2002COSPAR Houston, TX1 X-Ray Spectral Morphologies of Young Supernova Remnants John P. Hughes Rutgers University  Cara Rakowski, Rutgers.
High Resolution X-ray Spectroscopy of SN 1006 X-ray Diagnostics of Astrophysical Plasmas Jacco Vink (SRON Nat. Inst. for Space Research) Cambridge Ma,
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
New evidence for strong nonthermal effects in Tycho’s supernova remnant Leonid Ksenofontov 1 H.J.Völk 2, E.G.Berezhko 1, 1 Yu.G.Shafer Institute of Cosmophysical.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 13. Astrophysical Plasmas 02 December 2008.
March 11-13, 2002 Astro-E2 SWG 1 John P. Hughes Rutgers University Some Possible Astro-E2 Studies of Supernova Remnants.
Marco Miceli, INAF – Osservatorio Astronomico di Palermo Consorzio COMETA, Italy Collaborators F. Bocchino, INAF – Osservatorio Astronomico di Palermo,
January 8, st AAS Meeting1 Nucleosynthesis, Pulsars, Cosmic Rays, and Shock Physics: High Energy Studies of Supernova Remnants with Chandra and.
MHD Modeling of the Large Scale Solar Corona & Progress Toward Coupling with the Heliospheric Model.
May 6, 2003Constellation-X Workshop1 Spatial/Spectral Studies of Supernova Remnants with Chandra and XMM-Newton John P. Hughes Rutgers University.
An X-ray Study of the Bright Supernova Remnant G with XMM-Newton SNRs and PWNe in the Chandra Era Boston, MA – July 8 th, 2009 Daniel Castro,
August 2006JD09 IAU GA Prague1 Constraints on SNIa from Their Remnants: X-ray studies of the Tycho SNR John P. Hughes Rutgers University Collaborators:
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
NEI Modeling What do we have? What do we need? AtomDB workshop Hiroya Yamaguchi (CfA) Fe ion population in CIE (AtomDB v.2.0.2) Temperature.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Shock acceleration of cosmic rays Tony Bell Imperial College, London.
Tycho’s SNR SNR G "To make an apple pie from scratch, you must first invent the universe." ~Carl Sagan.
The Hot Plasma in the Galactic Center with Suzaku Masayoshi Nobukawa, Yoshiaki Hyodo, Katsuji Koyama, Takeshi Tsuru, Hironori Matsumoto (Kyoto Univ.)
Saclay Irfu Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era, Boston, July 2009 X-ray Observations of Supernova Remnants Anne Decourchelle.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
X-ray Studies of Supernova Remnants Una Hwang (NASA/GSFC, JHU) X-ray Astronomy School 2007 George Washington University.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
COSPAR 2008, Montreal, 13 July Patrick Slane (CfA) X-ray Observations of Supernova Remnant Shocks.
The Influence of the Return Current and Electron Beam on the EUV and X-Ray Flare Emission E. Dzifčáková, M. Karlický Astronomical Institute of the Academy.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
An Accelerated Strategic Computing Initiative (ASCI) Academic Strategic Alliances Program (ASAP) Center at The University of Chicago The Center for Astrophysical.
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve Chris Lindner Milos Milosavljevic, Sean M. Couch, Pawan Kumar.
Charge Exchange in Cygnus Loop R. S. Cumbee et al Satoru Katsuda et al Zhang Ningxiao.
Classification of SN Progenitors Optical obs of SNe Classification is relatively straightforward - Spectrum (historically well established) - Luminosity.
THE EXPANSION ASYMMETRY AND AGE OF THE CASSIOPEIA A SUPERNOVA REMNANT XinZhou
DSA in the non-linear regime Hui Li Department of Astronomy, Nanjing University.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Discovery of K  lines of neutral sulfur, argon, and calcium atoms from the Galactic Center Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru, Syukyo.
Nucleosynthesis and formation of the elements. Cosmic abundance of the elements Mass number.
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Death of Stars II Physics 113 Goderya Chapter(s): 14
Warm Absorbers: Are They Disk Outflows? Daniel Proga UNLV.
Progenitor stars of supernovae Poonam Chandra Royal Military College of Canada.
Barrel or Bilateral-shaped SNRs Jiangtao Li May 6th 2009.
Harvard-Smithsonian Center for Astrophysics Patrick Slane The Remnants of Supernovae.
Y. Matsuo A), M. Hashimoto A), M. Ono A), S. Nagataki B), K. Kotake C), S. Yamada D), K. Yamashita E) Long Time Evolutionary Simulations in Supernova until.
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Discovery of K  lines of neutral S, Ar, Ca, Cr, & Mn atoms from the Galactic center with Suzaku Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru,
1 Probing MHD Shocks with high-J CO observations: W28F SOFIA Observations 1.W28 is a mature supernova remnant (>2x10 4 yr old) located in the Inner Galaxy.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 7. Supernova Remnants.
The “youngest” Ia SNR in the Galaxy. The best to study early phase of Type Ia Cosmic Ray acceleration at the Shell The best to study the cosmic ray origin.
V.N.Zirakashvili, V.S.Ptuskin
Asami Hayato (RIKEN / Tokyo Univ. of Sci.)
Outline Introducing thermonuclear supernovae
Theoretical Astrophysics Group
Formation of Dust in the Ejecta of Type Ia Supernovae
Formation of Dust in the Ejecta of Type Ia Supernovae
Suzaku Observation of Tycho’s Supernova Remnant
爆燃Ia型超新星爆発時に おけるダスト形成
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

image: Toward high-resolved hydrodynamic Simulations of Supernova remnants such as Cas A, Tycho.. Masaomi Ono Kyushu University TV meeting

Contents Introduction Antecedent studies Calculation toward Tycho SNR – Initial condition – Method – Results Future prospects 2

Introduction 3

SNR observations 1 (Tycho) X-ray image – Red: Fe L-shell – Green: Si K-shell – Blue: high energy 1 : 0.93 : 0.70 (BW:CD:RS) 4 Warren et al Chandra X-ray image

Spectrum – Featureless – Ejecta 5 Warren et al SNR observations 3 (Tycho)

Ion X-ray emmitions Ion temperature (1-3)×10 10 K 6 Furuzawa et al SNR observations 3 (Tycho)

Antecedent studies 7

Thermal X-ray emission from shocked ejecta in Type Ia SNR 1 Explosion mechanisms – DET – SCH – DEF – DDT – PDD 8 Badenes et al. 2003; Badenes et al. 2005

Plasma model & Ionization calculation 9 Badenes et al. 2003; Badenes et al. 2005

Calculated synthetic spectrum Hamilton & Sarazin code + XSPEC software package 10 Badenes et al. 2003; Badenes et al. 2005

11 Wheeler, Maund & Couch 2008 Proposed jet direction Proper motion of compact object Holes The shape of Cas A 1

The shape of Cas A 2 High-resolution hydrodynamic simulation – FLASH Code (Fryxell et al. 2000) 12 Wheeler, Maund & Couch 2008 Jet

13 Calculation toward Tycho SNR

Initial condition Carbon deflagration model (W7) – Nomoto, Thielemann & Yokoi 1984 Density, temperature, chemical composition radial velocity Ambient medium – ρ AM = ~ g cm -3 (1 個 cm -3 ) – T = 10 3 K 14

Initial chemical composition 15 Thielemann, Nomoto & Yokoi 1986

Method & input physics Hydrodynamic simulation – Cede: ZEUS-2D – EoS Ideal gas + radiation (optically thick) P = K ργ, e = P / (γ - 1) (optically thin) τ = ∫ κ ρ dr = 2/3 (κ: electron scattering) – α-network (Müller 1986) 4 He, 12 C, 16 O, 20 Ne, 24 Mg, 28 Si, 32 S, 36 Ar, 40 Ca, 44 Ti, 48 Cr, 52 Fe, 56 Ni 16

Density 17

Energy density 18

Temperature 19

Density profile 20

Radial velocity profile 21

Mass fraction 22

Problems Oscillation – Rezoning & mapping ? 23

24 Future prospects

High-resolution MHD simulation AMR (Adaptive Mesh Refinement) – Berger & Oliger 1984; Berger & Colella Magnetic fieldAMR (3D)Nucleosynthesis ++ How we achieve the aim ?

Hydrodynamic Codes FLASH – PARAMESH AMR package – 3D, MPI, small nuclear reaction network – Two MHD units (8wave or USM) – Ionization unit (NEI) ZEUS-MP – 3D, MPI, magnetic field (MOC-CT) radiation HD (FLD) 26 ZEUS-MP + AMR + Network v.s. FLASH ?

FLASH with magnetic field On the origin of asymmetries in bilateral supernova remnants – 3D MHD simulations by FLASH code 27 Orlando et al Initial distributions of density & magnetic field

Synthetic radio emission 28 Orlando et al. 2007