Depth-First Search1 DB A C E. 2 Depth-first search (DFS) is a general technique for traversing a graph A DFS traversal of a graph G – Visits all the vertices.

Slides:



Advertisements
Similar presentations
[UVa]291 - The House Of Santa Claus.
Advertisements

© 2004 Goodrich, Tamassia Depth-First Search1 DB A C E.
Depth-First Search1 Part-H2 Depth-First Search DB A C E.
Graphs – Depth First Search ORD DFW SFO LAX
© 2004 Goodrich, Tamassia Breadth-First Search1 CB A E D L0L0 L1L1 F L2L2.
Depth-First Search1 DB A C E. 2 Outline and Reading Definitions (§6.1) Subgraph Connectivity Spanning trees and forests Depth-first search (§6.3.1) Algorithm.
Breadth-First Search1 Part-H3 Breadth-First Search CB A E D L0L0 L1L1 F L2L2.
© 2004 Goodrich, Tamassia Directed Graphs1 JFK BOS MIA ORD LAX DFW SFO.
© 2004 Goodrich, Tamassia Depth-First Search1 DB A C E.
1 Directed Graphs CSC401 – Analysis of Algorithms Lecture Notes 15 Directed Graphs Objectives: Introduce directed graphs and weighted graphs Present algorithms.
Graph Traversals CSC 172 SPRING 2002 LECTURE 26. Traversing graphs Depth-First Search like a post-order traversal of a tree Breath-First Search Less like.
1 Graphs: Concepts, Representation, and Traversal CSC401 – Analysis of Algorithms Lecture Notes 13 Graphs: Concepts, Representation, and Traversal Objectives:
Directed Graphs1 JFK BOS MIA ORD LAX DFW SFO. Directed Graphs2 Outline and Reading (§6.4) Reachability (§6.4.1) Directed DFS Strong connectivity Transitive.
Graph Traversals CSC 172 SPRING 2004 LECTURE 21. Announcements  Project 3 is graded  handed back Tuesday  Grad spam, tonight – if you are really anxious.
CSC311: Data Structures 1 Chapter 13: Graphs I Objectives: Graph ADT: Operations Graph Implementation: Data structures Graph Traversals: DFS and BFS Directed.
Minimum Spanning Trees
1 Graph Algorithms Lecture 09 Asst. Prof. Dr. Bunyarit Uyyanonvara IT Program, Image and Vision Computing Lab. School of Information and Computer Technology.
CSC 213 – Large Scale Programming. Today’s Goals  Make Britney sad through my color choices  Revisit issue of graph terminology and usage  Subgraphs,
Graphs Part 1. Outline and Reading Graphs (§13.1) – Definition – Applications – Terminology – Properties – ADT Data structures for graphs (§13.2) – Edge.
October 22, DFS, BFS, Biconnectivity, Digraphs 1 CS 221 West Virginia University.
Graphs. Data Structure for Graphs. Graph Traversals. Directed Graphs. Shortest Paths. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013.
Chapter 6 Graphs ORD DFW SFO LAX
GRAPHS 1. Outline 2  Undirected Graphs and Directed Graphs  Depth-First Search  Breadth-First Search.
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
Artificial Intelligence LECTURE 4 ARTIFICIAL INTELLIGENCE LECTURES BY ENGR. QAZI ZIA.
October 21, Graphs1 Graphs CS 221 (slides from textbook author)
1 Subgraphs A subgraph S of a graph G is a graph such that The vertices of S are a subset of the vertices of G The edges of S are a subset of the edges.
Depth-First Search Lecture 21: Graph Traversals
CSC401: Analysis of Algorithms 6-1 CSC401 – Analysis of Algorithms Chapter 6 Graphs Objectives: Introduce graphs and data structures Discuss the graph.
CHAPTER 13 GRAPH ALGORITHMS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
CSC 213 – Large Scale Programming Lecture 31: Graph Traversals.
1 COMP9024: Data Structures and Algorithms Week Eleven: Graphs (I) Hui Wu Session 1, 2016
Directed Graphs1 JFK BOS MIA ORD LAX DFW SFO. Directed Graphs2 Outline and Reading (§12.4) Reachability (§12.4.1) Directed DFS Strong connectivity Transitive.
© 2010 Goodrich, Tamassia Breadth-First Search1 CB A E D L0L0 L1L1 F L2L2.
Graphs ORD SFO LAX DFW Graphs 1 Graphs Graphs
CSC 172 DATA STRUCTURES.
Breadth-First Search L0 L1 L2
Graphs – Breadth First Search
Graphs 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Directed Graphs Directed Graphs Shortest Path 12/7/2017 7:10 AM BOS
Searching Graphs ORD SFO LAX DFW Spring 2007
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Breadth-First Search L0 L1 L2
COMP9024: Data Structures and Algorithms
COMP9024: Data Structures and Algorithms
Chapter 14 Graph Algorithms
Graphs Part 1.
Graphs.
Graphs.
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Depth-First Search D B A C E Depth-First Search Depth-First Search
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Breadth-First Search (BFS)
Depth-First Search D B A C E Depth-First Search Depth-First Search
Elementary Graph Algorithms
Depth-First Search D B A C E Depth-First Search Depth-First Search
Depth-First Search Graph Traversals Depth-First Search DFS.
Graphs ORD SFO LAX DFW Graphs Graphs
Subgraphs, Connected Components, Spanning Trees
Depth-First Search D B A C E Depth-First Search Depth-First Search
Searching Graphs ORD SFO LAX DFW Spring 2007
Graphs Part 1 ORD SFO LAX DFW
Copyright © Aiman Hanna All rights reserved
Depth-First Search D B A C E 4/13/2019 5:23 AM Depth-First Search
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Breadth-First Search L0 L1 L2 C B A E D F 4/25/2019 3:12 AM
Applications of BFS CSE 2011 Winter /17/2019 7:03 AM.
Breadth-First Search L0 L1 L2 C B A E D F 5/14/ :22 AM
Breadth-First Search L0 L1 L2 C B A E D F 7/28/2019 1:03 PM
Presentation transcript:

Depth-First Search1 DB A C E

2 Depth-first search (DFS) is a general technique for traversing a graph A DFS traversal of a graph G – Visits all the vertices and edges of G – Determines whether G is connected – Computes the connected components of G – Computes a spanning forest of G DFS on a graph with n vertices and m edges takes O(n  m ) time DFS can be further extended to solve other graph problems – Find and report a path between two given vertices – Find a cycle in the graph Depth-first search is to graphs what Euler tour is to binary trees

Depth-First Search3 DFS and Maze Traversal The DFS algorithm is similar to a classic strategy for exploring a maze – We mark each intersection, corner and dead end (vertex) visited – We mark each corridor (edge ) traversed – We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Depth-First Search4 DFS Algorithm The algorithm uses a mechanism for setting and getting “labels” of vertices and edges Algorithm DFS(G, v) Input graph G and a start vertex v of G Output labeling of the edges of G in the connected component of v as discovery edges and back edges setLabel(v, VISITED) for all e  G.incidentEdges(v) if getLabel(e)  UNEXPLORED w  opposite(v,e) if getLabel(w)  UNEXPLORED setLabel(e, DISCOVERY) DFS(G, w) else setLabel(e, BACK) Algorithm DFS(G) Input graph G Output labeling of the edges of G as discovery edges and back edges for all u  G.vertices() setLabel(u, UNEXPLORED) for all e  G.edges() setLabel(e, UNEXPLORED) for all v  G.vertices() if getLabel(v)  UNEXPLORED DFS(G, v)

Depth-First Search5 Example DB A C E D B A C ED B A C E discovery edge back edge A visited vertex A unexplored vertex unexplored edge

Depth-First Search6 Example (cont.) DB A C E DB A C E DB A C E D B A C E

Depth-First Search7 Properties of DFS Property 1 DFS(G, v) visits all the vertices and edges in the connected component of v Property 2 The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v DB A C E

Depth-First Search8 Analysis of DFS Setting/getting a vertex/edge label takes O(1) time Each vertex is labeled twice – once as UNEXPLORED – once as VISITED Each edge is labeled twice – once as UNEXPLORED – once as DISCOVERY or BACK Method incidentEdges is called once for each vertex DFS runs in O(n  m) time provided the graph is represented by the adjacency list structure – Recall that  v deg(v)  2m