Clustering.

Slides:



Advertisements
Similar presentations
K-Means Clustering Algorithm Mining Lab
Advertisements

Copyright Jiawei Han, modified by Charles Ling for CS411a
Clustering Clustering of data is a method by which large sets of data is grouped into clusters of smaller sets of similar data. The example below demonstrates.
What is Cluster Analysis?
Clustering AMCS/CS 340: Data Mining Xiangliang Zhang
Clustering.
Clustering Basic Concepts and Algorithms
PARTITIONAL CLUSTERING
CS690L: Clustering References:
Clustering: Introduction Adriano Joaquim de O Cruz ©2002 NCE/UFRJ
Data Mining Techniques: Clustering
Clustering II.
CEN474 Data Mining, Öğr. Gör. Esra Dinçer
Clustering.
© University of Minnesota Data Mining for the Discovery of Ocean Climate Indices 1 CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance.
Cluster Analysis.  What is Cluster Analysis?  Types of Data in Cluster Analysis  A Categorization of Major Clustering Methods  Partitioning Methods.
Cluster Analysis.
What is Cluster Analysis
Segmentação (Clustering) (baseado nos slides do Han)
1 Chapter 8: Clustering. 2 Searching for groups Clustering is unsupervised or undirected. Unlike classification, in clustering, no pre- classified data.
Cluster Analysis.
Cluster Analysis.
CLUSTERING (Segmentation)
What is Cluster Analysis?
UIC - CS 5941 Chapter 5: Clustering. UIC - CS 5942 Searching for groups Clustering is unsupervised or undirected. Unlike classification, in clustering,
Data Mining Cluster Analysis: Basic Concepts and Algorithms
Cluster Analysis Part I
11/15/2012ISC471 / HCI571 Isabelle Bichindaritz 1 Clustering.
1 Lecture 10 Clustering. 2 Preview Introduction Partitioning methods Hierarchical methods Model-based methods Density-based methods.
1 Motivation Web query is usually two or three words long. –Prone to ambiguity –Example “keyboard” –Input device of computer –Musical instruments How can.
October 27, 2015Data Mining: Concepts and Techniques1 Data Mining: Concepts and Techniques — Slides for Textbook — — Chapter 7 — ©Jiawei Han and Micheline.
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Clustering COMP Research Seminar BCB 713 Module Spring 2011 Wei Wang.
Cluster Analysis Potyó László. Cluster: a collection of data objects Similar to one another within the same cluster Similar to one another within the.
DATA MINING WITH CLUSTERING AND CLASSIFICATION Spring 2007, SJSU Benjamin Lam.
Radial Basis Function ANN, an alternative to back propagation, uses clustering of examples in the training set.
Compiled By: Raj Gaurang Tiwari Assistant Professor SRMGPC, Lucknow Unsupervised Learning.
Data Mining Algorithms
CS685 : Special Topics in Data Mining, UKY The UNIVERSITY of KENTUCKY Clustering Analysis CS 685: Special Topics in Data Mining Jinze Liu.
Data Mining Lecture 6. Course Syllabus Case Study 1: Working and experiencing on the properties of The Retail Banking Data Mart (Week 4 – Assignment1)
Cluster Analysis Dr. Bernard Chen Assistant Professor Department of Computer Science University of Central Arkansas.
Mr. Idrissa Y. H. Assistant Lecturer, Geography & Environment Department of Social Sciences School of Natural & Social Sciences State University of Zanzibar.
Cluster Analysis Dr. Bernard Chen Ph.D. Assistant Professor Department of Computer Science University of Central Arkansas Fall 2010.
Clustering Wei Wang. Outline What is clustering Partitioning methods Hierarchical methods Density-based methods Grid-based methods Model-based clustering.
1 Similarity and Dissimilarity Between Objects Distances are normally used to measure the similarity or dissimilarity between two data objects Some popular.
Data Mining Lecture 7. Course Syllabus Clustering Techniques (Week 6) –K-Means Clustering –Other Clustering Techniques.
Cluster Analysis What is Cluster Analysis? Types of Data in Cluster Analysis A Categorization of Major Clustering Methods Partitioning Methods.
1 Cluster Analysis What is Cluster Analysis? Types of Data in Cluster Analysis A Categorization of Major Clustering Methods Partitioning Methods Density-Based.
CLUSTER ANALYSIS. Cluster Analysis  Cluster analysis is a major technique for classifying a ‘mountain’ of information into manageable meaningful piles.
Topic 4: Cluster Analysis Analysis of Customer Behavior and Service Modeling.
Cluster Analysis This work is created by Dr. Anamika Bhargava, Ms. Pooja Kaul, Ms. Priti Bali and Ms. Rajnipriya Dhawan and licensed under a Creative Commons.
Data Mining Comp. Sc. and Inf. Mgmt. Asian Institute of Technology
What Is Cluster Analysis?
Data Mining: Concepts and Techniques (3rd ed.) — Chapter 10 —
Clustering CENG 514.
Clustering CENG 514.
EECS 730 Introduction to Bioinformatics Microarray
Topic 3: Cluster Analysis
©Jiawei Han and Micheline Kamber Department of Computer Science
Data Mining: Concepts and Techniques
Data Mining: Concepts and Techniques
CSE572, CBS598: Data Mining by H. Liu
Cluster Analysis What is Cluster Analysis?
Data Mining 資料探勘 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育
DATA MINING Introductory and Advanced Topics Part II - Clustering
Data Mining: Clustering
CSE572, CBS572: Data Mining by H. Liu
What Is Good Clustering?
Clustering Wei Wang.
Topic 5: Cluster Analysis
CSE572: Data Mining by H. Liu
Presentation transcript:

Clustering

Supervised & Unsupervised Learning Classification The number of classes and class labels of data elements in training data is known beforehand Unsupervised learning Clustering Which data belongs to which class in the training data is not known. Usually the number of classes is also not known

What is clustering? Nesneleri demetlere (gruplara) ayırma Find the similarities in the data and group similar objects Cluster: a group of objects that are similar Objects within the same cluster are closer Minimize the inter class distance Maximize the intra-class distance

What is clustering? How many clusters? 6 clusters 2 clusters

Application Areas General Areas Applications Understanding the distribution of data Preprocessing – reduce data, smoothing Applications Pattern recognition Image processing Outlier/ fraud detection Cluster user / customer

Requirements of Clustering in Data Mining Scalability Ability to deal with different types of attributes Ability to handle dynamic data Discovery of clusters with arbitrary shape Minimal requirements for domain knowledge to determine input parameters Able to deal with noise and outliers High dimensionality Interpretability and usability

Quality: What Is Good Clustering? A good clustering method will produce high quality clusters with high intra-class similarity low inter-class similarity The quality of a clustering result depends on both the similarity measure used by the method and its implementation The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns

Measure the Quality of Clustering Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j) There is a separate “quality” function that measures the “goodness” of a cluster. The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables. It is hard to define “similar enough” or “good enough” the answer is typically highly subjective.

Data Structures Data matrix Dissimilarity matrix n: num of data elements p: nu of attributes Dissimilarity matrix d(i,j): distance between two data

Similarity and Dissimilarity Between Objects Distances are normally used to measure the similarity or dissimilarity between two data objects Some popular ones include: Minkowski distance: where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p- dimensional data objects, and q is a positive integer If q = 1, d is Manhattan distance

Similarity and Dissimilarity Between Objects (Cont.) If q = 2, d is Euclidean distance: Properties of dist metrics d(i,j)  0 d(i,i) = 0 d(i,j) = d(j,i) d(i,j)  d(i,k) + d(k,j)

Major Clustering Approaches Partitioning approach: Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors Typical methods: k-means, k-medoids, CLARANS Hierarchical approach: Create a hierarchical decomposition of the set of data (or objects) using some criterion Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON Density-based approach: Based on connectivity and density functions Typical methods: DBSACN, OPTICS, DenClue Model-based: A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other Typical methods: EM, SOM, COBWEB

Typical Alternatives to Calculate the Distance between Clusters Single link: smallest distance between an element in one cluster and an element in the other, i.e., dis(Ki, Kj) = min(tip, tjq) Complete link: largest distance between an element in one cluster and an element in the other, i.e., dis(Ki, Kj) = max(tip, tjq) Average: avg distance between an element in one cluster and an element in the other, i.e., dis(Ki, Kj) = avg(tip, tjq) Centroid: distance between the centroids of two clusters, i.e., dis(Ki, Kj) = dis(Ci, Cj) Medoid: distance between the medoids of two clusters, i.e., dis(Ki, Kj) = dis(Mi, Mj) Medoid: one chosen, centrally located object in the cluster

Centroid, Radius and Diameter of a Cluster (for numerical data sets) Centroid: the “middle” of a cluster Radius: square root of average distance from any point of the cluster to its centroid Diameter: square root of average mean squared distance between all pairs of points in the cluster