CS621 : Artificial Intelligence

Slides:



Advertisements
Similar presentations
Artificial Neural Networks
Advertisements

Multi-Layer Perceptron (MLP)
CS344: Principles of Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 11, 12: Perceptron Training 30 th and 31 st Jan, 2012.
A Brief Overview of Neural Networks By Rohit Dua, Samuel A. Mulder, Steve E. Watkins, and Donald C. Wunsch.
Multilayer Perceptrons 1. Overview  Recap of neural network theory  The multi-layered perceptron  Back-propagation  Introduction to training  Uses.
CSCI 347 / CS 4206: Data Mining Module 07: Implementations Topic 03: Linear Models.
Machine Learning: Connectionist McCulloch-Pitts Neuron Perceptrons Multilayer Networks Support Vector Machines Feedback Networks Hopfield Networks.
Machine Learning Neural Networks
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
September 30, 2010Neural Networks Lecture 8: Backpropagation Learning 1 Sigmoidal Neurons In backpropagation networks, we typically choose  = 1 and 
Artificial Neural Networks
CHAPTER 11 Back-Propagation Ming-Feng Yeh.
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
CS621: Artificial Intelligence Lecture 24: Backpropagation Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
Dr. Hala Moushir Ebied Faculty of Computers & Information Sciences
CS623: Introduction to Computing with Neural Nets (lecture-10) Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
Artificial Neural Networks
Multiple-Layer Networks and Backpropagation Algorithms
Artificial Neural Networks
Multi-Layer Perceptrons Michael J. Watts
Neural Networks AI – Week 23 Sub-symbolic AI Multi-Layer Neural Networks Lee McCluskey, room 3/10
Artificial Neural Network Yalong Li Some slides are from _24_2011_ann.pdf.
Appendix B: An Example of Back-propagation algorithm
 Diagram of a Neuron  The Simple Perceptron  Multilayer Neural Network  What is Hidden Layer?  Why do we Need a Hidden Layer?  How do Multilayer.
Artificial Intelligence Techniques Multilayer Perceptrons.
Artificial Neural Networks. The Brain How do brains work? How do human brains differ from that of other animals? Can we base models of artificial intelligence.
CS 478 – Tools for Machine Learning and Data Mining Backpropagation.
A note about gradient descent: Consider the function f(x)=(x-x 0 ) 2 Its derivative is: By gradient descent. x0x0 + -
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 31: Feedforward N/W; sigmoid.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 30: Perceptron training convergence;
Multi-Layer Perceptron
Non-Bayes classifiers. Linear discriminants, neural networks.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 29: Perceptron training and.
Instructor: Prof. Pushpak Bhattacharyya 13/08/2004 CS-621/CS-449 Lecture Notes CS621/CS449 Artificial Intelligence Lecture Notes Set 4: 24/08/2004, 25/08/2004,
Back-Propagation Algorithm AN INTRODUCTION TO LEARNING INTERNAL REPRESENTATIONS BY ERROR PROPAGATION Presented by: Kunal Parmar UHID:
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 32: sigmoid neuron; Feedforward.
Introduction to Neural Networks Introduction to Neural Networks Applied to OCR and Speech Recognition An actual neuron A crude model of a neuron Computational.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 21: Perceptron training and convergence.
Neural Networks Teacher: Elena Marchiori R4.47 Assistant: Kees Jong S2.22
EEE502 Pattern Recognition
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 25: Backpropagation and Application.
Previous Lecture Perceptron W  t+1  W  t  t  d(t) - sign (w(t)  x)] x Adaline W  t+1  W  t  t  d(t) - f(w(t)  x)] f’ x Gradient.
Artificial Intelligence CIS 342 The College of Saint Rose David Goldschmidt, Ph.D.
Chapter 6 Neural Network.
Bab 5 Classification: Alternative Techniques Part 4 Artificial Neural Networks Based Classifer.
CS623: Introduction to Computing with Neural Nets (lecture-9) Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
CSE343/543 Machine Learning Mayank Vatsa Lecture slides are prepared using several teaching resources and no authorship is claimed for any slides.
Neural networks.
Fall 2004 Backpropagation CS478 - Machine Learning.
CS623: Introduction to Computing with Neural Nets (lecture-5)
CSE 473 Introduction to Artificial Intelligence Neural Networks
CS621: Artificial Intelligence
Classification Neural Networks 1
CS623: Introduction to Computing with Neural Nets (lecture-2)
CS621: Artificial Intelligence Lecture 17: Feedforward network (lecture 16 was on Adaptive Hypermedia: Debraj, Kekin and Raunak) Pushpak Bhattacharyya.
of the Artificial Neural Networks.
Neural Networks Chapter 5
CS623: Introduction to Computing with Neural Nets (lecture-4)
CS 621 Artificial Intelligence Lecture 25 – 14/10/05
Capabilities of Threshold Neurons
CS623: Introduction to Computing with Neural Nets (lecture-9)
CS621 : Artificial Intelligence
CS623: Introduction to Computing with Neural Nets (lecture-5)
CS623: Introduction to Computing with Neural Nets (lecture-3)
CS621: Artificial Intelligence Lecture 22-23: Sigmoid neuron, Backpropagation (Lecture 20 and 21 taken by Anup on Graphical Models) Pushpak Bhattacharyya.
Prof. Pushpak Bhattacharyya, IIT Bombay
CS621: Artificial Intelligence Lecture 18: Feedforward network contd
CS621: Artificial Intelligence Lecture 17: Feedforward network (lecture 16 was on Adaptive Hypermedia: Debraj, Kekin and Raunak) Pushpak Bhattacharyya.
Presentation transcript:

CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 23 Feedforward N/W and Backpropagation Algorithm

Feedforward Network

Limitations of perceptron Non-linear separability is all pervading Single perceptron does not have enough computing power Eg: XOR cannot be computed by perceptron

Solutions Tolerate error (Ex: pocket algorithm used by connectionist expert systems). Try to get the best possible hyperplane using only perceptrons Use higher dimension surfaces Ex: Degree - 2 surfaces like parabola Use layered network

Pocket Algorithm Algorithm evolved in 1985 – essentially uses PTA Basic Idea: Always preserve the best weight obtained so far in the “pocket” Change weights, if found better (i.e. changed weights result in reduced error).

XOR using 2 layers Non-LS function expressed as a linearly separable function of individual linearly separable functions.

Example - XOR = 0.5 w1=1 w2=1  Calculation of XOR x1x2 x1x2 x1 x2 1 Calculation of x1x2 = 1 w1=-1 w2=1.5 x1 x2

Example - XOR = 0.5 w1=1 w2=1 x1x2 1 1 x1x2 1.5 -1 -1 1.5 x1 x2

Some Terminology A multilayer feedforward neural network has Input layer Output layer Hidden layer (asserts computation) Output units and hidden units are called computation units.

Training of the MLP Multilayer Perceptron (MLP) Question:- How to find weights for the hidden layers when no target output is available? Credit assignment problem – to be solved by “Gradient Descent”

Gradient Descent Technique Let E be the error at the output layer ti = target output; oi = observed output i is the index going over n neurons in the outermost layer j is the index going over the p patterns (1 to p) Ex: XOR:– p=4 and n=1

Weights in a ff NN wmn is the weight of the connection from the nth neuron to the mth neuron E vs surface is a complex surface in the space defined by the weights wij gives the direction in which a movement of the operating point in the wmn co-ordinate space will result in maximum decrease in error m wmn n

Sigmoid neurons Gradient Descent needs a derivative computation - not possible in perceptron due to the discontinuous step function used!  Sigmoid neurons with easy-to-compute derivatives used! Computing power comes from non-linearity of sigmoid function.

Derivative of Sigmoid function

Training algorithm Initialize weights to random values. For input x = <xn,xn-1,…,x0>, modify weights as follows Target output = t, Observed output = o Iterate until E <  (threshold)

Calculation of ∆wi