TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.

Slides:



Advertisements
Similar presentations
Lecture 7 Last lecture Standing wave Input impedance i(z) = V(z) = V 0 ( ) + +  e jzjz - e -j  z (e(e + V0V0 Z0Z0 e jzjz  ) |V(z)| = | V.
Advertisements

EMLAB 1 Transmission line. EMLAB 2 An apparatus to convey energy or signal from one place to another place. Transmitter to an antenna connections between.
ENE 428 Microwave Engineering
EKT241 – ELECTROMAGNETICS THEORY
UNIVERSITI MALAYSIA PERLIS
UNIVERSITI MALAYSIA PERLIS
Design and Analysis of RF and Microwave Systems IMPEDANCE TRANSFORMERS AND TAPERS Lecturers: Lluís Pradell Francesc.
MAXWELL’S EQUATIONS AND TRANSMISSION MEDIA CHARACTERISTICS
ELCT564 Spring /9/20151ELCT564 Chapter 2: Transmission Line Theory.
Chapter 2: Transmission Line Theory
EEE340Lecture 391 For nonmagnetic media,  1 =  2 =  : Total reflection When  1 >  2 (light travels from water to air)  t >  i If  t = 
Lecture 12 Last lecture: impedance matching Vg(t) A’ A Tarnsmission line ZLZL Z0Z0 Z in Zg IiIi Matching network Z in = Z 0.
July, 2003© 2003 by H.L. Bertoni1 I. Introduction to Wave Propagation Waves on transmission lines Plane waves in one dimension Reflection and transmission.
Lecture 4 Last lecture: 1.Phasor 2.Electromagnetic spectrum 3.Transmission parameters equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L V BB’ (t)
Lecture 1 Units and dimensions Six fundamental International System of Units DimensionsUnitsymbol Lengthmeterm Masskilogramkg Timeseconds Electric.
Lecture 6 Last lecture: Wave propagation on a Transmission line Characteristic impedance Standing wave and traveling wave Lossless transmission.
MAXWELL’S EQUATIONS AND TRANSMISSION MEDIA CHARACTERISTICS
Lecture 2 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient.
Electromagnetics (ENGR 367)
Lecture 3 Last lecture: Magnetic field by constant current r I B = 2r2r II    =  r  0,  r: relative magnetic permeability  r =1 for most.
Lecture 9 Last lecture Parameter equations input impedance.
Lecture 9 Last lecture Power flow on transmission line.
ENE 428 Microwave Engineering
Lecture 4.  1.5 The terminated lossless transmission line What is a voltage reflection coefficient? Assume an incident wave ( ) generated from a source.
ECE 546 – Jose Schutt-Aine 1 ECE 546 Lecture -04 Transmission Lines Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.
OBJECTIVES To become familiar with propagation of signals through lines Understand signal propagation at Radio frequencies Understand radio propagation.
Chapter 2. Transmission Line Theory
Transmission Line Theory
10. Transmission Line 서강대학교 전자공학과 윤상원 교수
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
Telegragher’s Equations Group - A. Usman Nofal Kh. Muhammad Mashood Khawaja Muhammad Abdul Rahman Abdullah Amin Yahya Ahmad Syeda Sana Zafar Taimoor Tahir.
Notes 5 ECE Microwave Engineering Waveguides Part 2:
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 9 ECE 6340 Intermediate EM Waves 1.
Lecture 9 Smith Chart Normalized admittance z and y are directly opposite each other on.
Lecture 12 Smith Chart & VSWR
ELECTROMAGNETICS AND APPLICATIONS Lecture 11 RF & Microwave TEM Lines Luca Daniel.
Lecture 3 Phasor V R (t) Vs(t)V C (t) i (t) Vs(t) = V 0 Sin(  t+  0 ), V R (t) = i(t)R, V C (t) = i(t)dt/C, Vs(t) = V R (t) +V C (t), V 0 Sin(
L1-1 ELECTROMAGNETICS AND APPLICATIONS Lecture 8 TEM Transmission Lines Luca Daniel.
Inductance of a Co-axial Line m.m.f. round any closed path = current enclosed.
Yi HUANG Department of Electrical Engineering & Electronics
08 - Winter 2005 ECE ECE 766 Computer Interfacing and Protocols 1 Transmission Lines Transmission line effects must be considered when length is comparable.
Lecture 4 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient.
ENE 428 Microwave Engineering
Microwave Engineering, 3rd Edition by David M. Pozar Copyright © 2004 John Wiley & Sons Figure 2.1 (p. 50) Voltage and current definitions and equivalent.
Lecture 3.
Chapter 2. Transmission Line Theory
Chapter 2 Transmission Line Theory (2.1 ~ 2.5) 전자파연구실 1.
Lecture 5 Last lecture: Transmission line parameters Types of transmission lines Lumped-element model Transmission line equations Telegrapher’s.
TRANSMISSION LINE EQUATIONS Transmission line is often schematically represented as a two-wire line. Figure 1: Voltage and current definitions. The transmission.
Chapter9 Theory and Applications of Transmission Lines.
1 John McCloskey NASA/GSFC Chief EMC Engineer Code 565 Building 23, room E Fundamentals of EMC Transmission Lines.
Chapter 2 Overview 1.
ENE 429 Antenna and Transmission lines Theory Lecture 7 Waveguides DATE: 3-5/09/07.
Notes 13 ECE Microwave Engineering
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 7 ECE 6340 Intermediate EM Waves 1.
Lab2: Smith Chart And Matching
Smith Chart & Matching Anurag Nigam.
Lecture 8 Last lecture short circuit line open circuit line
Applied EM by Ulaby, Michielssen and Ravaioli
Chapter 10. Transmission lines
Standing Wave Lecture 7 Voltage maximum
Non-ideal property – crosstalk
Transmission Lines & Resonators
Electromagnetics II Unit 1:Basics of Transmission Lines
Notes 7 ECE 6340 Intermediate EM Waves Fall 2016
7e Applied EM by Ulaby and Ravaioli
Notes 10 Transmission Lines (Reflection and Impedance)
Microwave Engineering
7e Applied EM by Ulaby and Ravaioli
4th Week Seminar Sunryul Kim Antennas & RF Devices Lab.
Presentation transcript:

TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Transmission Lines

Dr. Blanton - ENTC Transmission Lines 3 Transmission lines 1.Transmission line parameters, equations 2.Wave propagations 3.Lossless line, standing wave and reflection coefficient 4.Input impedence 5.Special cases of lossless line 6.Power flow 7.Smith chart 8.Impedence matching 9.Transients on transmission lines

Dr. Blanton - ENTC Transmission Lines 4 1.Transmission line parameters, equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L V AA’ (t) = Vg(t) = V 0 cos(  t), V BB’ (t) = V AA’ (t-t d ) = V AA’ (t-L/c) = V 0 cos(  (t-L/c)), V BB’ (t) = V AA’ (t) Low frequency circuits: Approximate result

Dr. Blanton - ENTC Transmission Lines 5 1.Transmission line parameters, equations Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L V BB’ (t) = V AA’ (t-t d ) = V AA’ (t-L/c) = V 0 cos(  (t-L/c)) = V 0 cos(  t- 2  L/ ), Recall:  =c, and  = 2  If >>L, V BB’ (t)  V 0 cos(  t) = V AA’ (t), If <= L, V BB’ (t)  V AA’ (t), the circuit theory has to be replaced.

Dr. Blanton - ENTC Transmission Lines 6 Transmission line parameters Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B L time delay V BB’ (t) = V AA’ (t-t d ) = V AA’ (t-L/v p ), Reflection: the voltage has to be treated as wave, some bounce back power loss: due to reflection and some other loss mechanism, Dispersion: in material, V p could be different for different wavelength

Dr. Blanton - ENTC Transmission Lines 7 Types of transmission lines Transverse electromagnetic (TEM) transmission lines B E E B a) Coaxial lineb) Two-wire linec) Parallel-plate line d) Strip linee) Microstrip line

Dr. Blanton - ENTC Transmission Lines 8 Types of transmission lines Higher-order transmission lines a) Optical fiber b) Rectangular waveguidec) Coplanar waveguide

Dr. Blanton - ENTC Transmission Lines 9 Lumped-element Model Represent transmission lines as parallel-wire configuration Vg(t) V BB’ (t) V AA’ (t) A A’ B’ B zz zz zz Vg(t) R’  z L’  z G’  z C’  z R’  z L’  z G’  z R’  z C’  z L’  z G’  z C’  z

Dr. Blanton - ENTC Transmission Lines 10 Transmission line equations Represent transmission lines as parallel-wire configuration V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t + V(z+  z,t), (1) i (z,t) i (z+  z,t) i (z,t) = G’  z V(z+  z,t) + C’  z  V(z+  z,t)/  t + i (z+  z,t), (2)

Dr. Blanton - ENTC Transmission Lines 11 Transmission line equations V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t + V(z+  z,t), (1) V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) -V(z+  z,t) + V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t -  V(z,t)/  z = R’ i (z,t) + L’  i (z,t)/  t, (3) Rewrite V(z,t) and i (z,t) as phasors, for sinusoidal V(z,t) and i (z,t) : V(z,t) = Re( V(z) e jtjt ), i (z,t) = Re( i (z) e jtjt ),

Dr. Blanton - ENTC Transmission Lines 12 Transmission line equations V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) Recall: di(t)/dt = Re(d i e jtjt )/dt ),= Re(i jtjt e jj -  V(z,t)/  z = R’ i (z,t) + L’  i (z,t)/  t, (3) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4)

Dr. Blanton - ENTC Transmission Lines 13 Transmission line equations Represent transmission lines as parallel-wire configuration V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) V(z,t) = R’  z i (z,t) + L’  z  i (z,t)/  t + V(z+  z,t), (1) i (z,t) i (z+  z,t) i (z,t) = G’  z V(z+  z,t) + C’  z  V(z+  z,t)/  t + i (z+  z,t), (2)

Dr. Blanton - ENTC Transmission Lines 14 Transmission line equations V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) - i (z+  z,t) + i (z,t) = G’  z V (z +  z,t) + C’  z  V(z +  z,t)/  t -  i(z,t)/  z = G’ V (z,t) + C’  V (z,t)/  t, (5) Rewrite V(z,t) and i (z,t) as phasors, for sinusoidal V(z,t) and i (z,t) : V(z,t) = Re( V(z) e jtjt ), i (z,t) = Re( i (z) e jtjt ), i (z,t) = G’  z V(z+  z,t) + C’  z  V(z+  z,t)/  t + i (z+  z,t), (2)

Dr. Blanton - ENTC Transmission Lines 15 Transmission line equations V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) Recall: dV(t)/dt = Re(d V e jtjt )/dt ),= Re(V jtjt e jj -  i(z,t)/  z = G’ V (z,t) + C’  V (z,t)/  t, (6) - d i(z)/ dz = G’ V (z) + j  C’ V (z), (7)

Dr. Blanton - ENTC Transmission Lines 16 V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain Take d /dz on both sides of eq. (4) - d² V(z)/ dz² = R’ d i (z)/dz + j  L’ d i (z)/dz, (8)

Dr. Blanton - ENTC Transmission Lines 17 - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain substitute (7) to (8) d² V(z)/ dz² = ( R’ + j  L’) (G’+ j  C’)V(z), - d² V(z)/ dz² = R’ d i (z)/dz + j  L’ d i (z)/dz, (8) d² V(z)/ dz² - ( R’ + j  L’) (G’+ j  C’)V(z) = 0, (9) or d² V(z)/ dz² -  ² V(z) = 0, (10)  ² = ( R’ + j  L’) (G’+ j  C’), (11)

Dr. Blanton - ENTC Transmission Lines 18 V(z,t) R’  z L’  z G’  z C’  z V(z+  z,t) i (z,t) i (z+  z,t) - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain Take d /dz on both sides of eq. (7) - d² i(z)/ dz² = G’ d V (z)/dz + j  C’ d V (z)/dz, (12)

Dr. Blanton - ENTC Transmission Lines 19 - d i(z)/ dz = G’ V(z) + j  C’ V (z), (7) - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) Telegrapher’s equation in phasor domain substitute (4) to (12) d² i(z)/ dz² = ( R’ + j  L’) (G’+ j  C’)i(z), d² i(z)/ dz² - ( R’ + j  L’) (G’+ j  C’) i(z) = 0, (9) or d² i(z)/ dz² -  ² i(z) = 0, (13)  ² = ( R’ + j  L’) (G’+ j  C’), (11) - d² i(z)/ dz² = G’ d V (z)/dz + j  C’ d V (z)/dz, (12)

Dr. Blanton - ENTC Transmission Lines 20 Wave equations d² i(z)/ dz² -  ² i(z) = 0, (13) d² V(z)/ dz² -  ² V(z) = 0, (10)  =  + j ,  = Re ( R’ + j  L’) (G’+ j  C’),  = Im ( R’ + j  L’) (G’+ j  C’),

Dr. Blanton - ENTC Transmission Lines 21 Wave equations d² i(z)/ dz² -  ² i(z) = 0, (13) d² V(z)/ dz² -  ² V(z) = 0, (10)  =  + j ,  = Re ( R’ + j  L’) (G’+ j  C’),  = Im ( R’ + j  L’) (G’+ j  C’), V(z) = V 0 (14) Solving the second order differential equation + e -z-z + - V0V0 e zz i(z) = I 0 (15) + e -z-z + - I0I0 e zz

Dr. Blanton - ENTC Transmission Lines 22 Wave equations V(z) = V 0 (14) + e -z-z + - V0V0 e zz i(z) = I 0 (15) + e -z-z + - I0I0 e zz where: + V0V0 - V0V0 andare determined by boundary conditions. + I0I0 - I0I0 andare related to - V0V0 + V0V0 andby characteristic impedance Z 0.

Dr. Blanton - ENTC Transmission Lines 23 recall: - d V(z)/ dz = R’ i (z) + j  L’ i (z), (4) V(z) = V 0 (14) V0V0 e zz i(z) = I 0 (15) + e -z-z + - I0I0 e zz e -z-z e -z-z V0V0 + e zz V0V0 - - = ( R’ + j  L’) i (z), (16) i (z) = ( R’ + j  L’)  e -z-z (V0(V0 + e zz V0V0 - - ) I0I0 + =  V0V0 + I0I0 - = -- V0V0 - (17) (18) Characteristic impedance Z 0

Dr. Blanton - ENTC Transmission Lines 24 Characteristic impedance Z 0 I0I0 + = ( R’ + j  L’)  V0V0 + I0I0 - = -- V0V0 - (17) (18) = ( R’ + j  L’)  + Z 0  Define characteristic impedance Z 0 I0I0 + V0V0 =  = ( R’ + j  L’) (G’+ j  C’) ( R’ + j  L’) (G’+j  C’) recall:

Dr. Blanton - ENTC Transmission Lines 25 Summary:  = ( R’ + j  L’) (G’+ j  C’) + Z 0  I0I0 + V0V0 = ( R’ + j  L’) (G’+j  C’) V(z) = V 0 (14) V0V0 e zz i(z) = I 0 (15) + e -z-z + - I0I0 e zz e -z-z (19) (20)

Dr. Blanton - ENTC Transmission Lines 26 Example, an air line : solution: R’ = 0 , G’ = 0 / , Z 0 = 50 ,  = 20 rad/m, f = 700 MHz L’ = ? and C’ = ? Z0Z0 = ( R’ + j  L’) (G’+j  C’) = j  L’ j  C’ = 50   = ( R’ + j  L’) (G’+ j  C’) = jj L’C’  =  + j ,  =  L’C’ = 20 rad/m

Dr. Blanton - ENTC Transmission Lines 27 lossless transmission line : = ( R’ + j  L’) (G’+ j  C’)  =  + j , If R’<< j  L’ and G’ << j  C’,  = ( R’ + j  L’ ) (G’+ j  C’) = jj L’C’  = 0  =  L’C’ lossless line

Dr. Blanton - ENTC Transmission Lines 28 lossless transmission line :  = 0  =  L’C’ lossless line Z0Z0 = ( R’ + j  L’) (G’+j  C’) = j  L’ j  C’ Z0Z0 = L’ C’  = 2  / = 2  /  =  L’C’ 1 Vp =  /  = L’C’ 1

Dr. Blanton - ENTC Transmission Lines 29 For TEM transmission line : Vp = L’C’ 1 L’C’ =  =  1  =  L’C’ =   = rrrr c Z0Z0 = L’ C’ summary : V(z) = V V0V0 e jzjz i(z) = I 0 + e -j  z + - I0I0 e jzjz e = rrrr c Vp = L’C’ 1  =  =  

Dr. Blanton - ENTC Transmission Lines 30 Voltage reflection coefficient : Vg(t) VLVL A z = 0 B l ZLZL z = - l Z0Z0 ViVi i(z) = V(z) = V V0V0 e jzjz - e -j  z e + V0V0 Z0Z0 e jzjz - V0V0 Z0Z0 V L = + = - V0V0 + V0V0 V(z) z = V0V0 Z0Z0 - V0V0 Z0Z0 i(z) z = 0 i L = = ZLZL = VLVL iLiL = + - V0V0 + V0V0 - + V0V0 Z0Z0 - V0V0 Z0Z0 + V0V0 - V0V0 = ZLZL Z0Z0 - ZLZL Z0Z0 +

Dr. Blanton - ENTC Transmission Lines 31 Voltage reflection coefficient : - V0V0 + V0V0 = ZLZL Z0Z0 - ZLZL Z0Z0 +    Current reflection coefficient : - i0i0 + i0i0 = -  i  - V0V0 + V0V0 = -  Notes : 1.|  |  1, how to prove it? 2.If Z L = Z 0,  = 0. Impedance match, no reflection from the load Z L.

Dr. Blanton - ENTC Transmission Lines 32 An example : A’ z = 0 A Z 0 = 100  R L = 50  C L = 10pF f = 100MHz Z L = R L + j/  C L = 50 –j159 = ZLZL Z0Z0 - ZLZL Z0Z0 + 