CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3 - Search.

Slides:



Advertisements
Similar presentations
Lecture Notes on AI-NN Chapter 5 Information Processing & Utilization.
Advertisements

CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 2 - Search.
CS344: Principles of Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 7, 8, 9: Monotonicity 16, 17 and 19 th Jan, 2012.
Greedy best-first search Use the heuristic function to rank the nodes Search strategy –Expand node with lowest h-value Greedily trying to find the least-cost.
Solving Problem by Searching
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture– 4, 5, 6: A* properties 9 th,10 th and 12 th January,
Artificial Intelligence Chapter 9 Heuristic Search Biointelligence Lab School of Computer Sci. & Eng. Seoul National University.
October 1, 2012Introduction to Artificial Intelligence Lecture 8: Search in State Spaces II 1 A General Backtracking Algorithm Let us say that we can formulate.
1 Heuristic Search Chapter 4. 2 Outline Heuristic function Greedy Best-first search Admissible heuristic and A* Properties of A* Algorithm IDA*
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 15, 16, 17- Completeness Proof; Self References and.
Lecture 3 Informed Search CSE 573 Artificial Intelligence I Henry Kautz Fall 2001.
Problem Solving and Search in AI Heuristic Search
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–2,3: A* 3 rd and 5 th January, 2012.
UNIVERSITY OF SOUTH CAROLINA Department of Computer Science and Engineering CSCE 580 Artificial Intelligence Dijkstra’s Algorithm: Notes to Complement.
Class of 28 th August. Announcements Lisp assignment deadline extended (will take it until 6 th September (Thursday). In class. Rao away on 11 th and.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 13– Search.
Informed Search Idea: be smart about what paths to try.
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 - Introduction.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5: Monotonicity 13 th Jan, 2011.
Chapter 4 Search in State Spaces Xiu-jun GONG (Ph. D) School of Computer Science and Technology, Tianjin University
Informed search algorithms
CS 344 Artificial Intelligence By Prof: Pushpak Bhattacharya Class on 15/Jan/2007.
1 Shanghai Jiao Tong University Informed Search and Exploration.
State-Space Searches. 2 State spaces A state space consists of A (possibly infinite) set of states The start state represents the initial problem Each.
Informed search algorithms Chapter 4. Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most.
CS344: Introduction to Artificial Intelligence (associated lab: CS386)
Review: Tree search Initialize the frontier using the starting state While the frontier is not empty – Choose a frontier node to expand according to search.
Heuristic Search Andrea Danyluk September 16, 2013.
Informed Search and Heuristics Chapter 3.5~7. Outline Best-first search Greedy best-first search A * search Heuristics.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5: Power of Heuristic; non- conventional search.
Feng Zhiyong Tianjin University Fall  Best-first search  Greedy best-first search  A * search  Heuristics  Local search algorithms  Hill-climbing.
Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most desirable unexpanded node Implementation:
Informed Search II CIS 391 Fall CIS Intro to AI 2 Outline PART I  Informed = use problem-specific knowledge  Best-first search and its variants.
Informed Search CSE 473 University of Washington.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 2 - Search.
Searching for Solutions
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 13– Search 17 th August, 2010.
0 The animation which I am proposing here will be a 2D animation and can be developed in JAVA or Flash.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3 - Search.
Chapter 3.5 and 3.6 Heuristic Search Continued. Review:Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 17– Theorems in A* (admissibility, Better performance.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lectures 18, 19, 20– A* Monotonicity 2 nd, 6 th and 7 th September, 2010.
CS344: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 to 8– Introduction, Search, A* (has the associated lab course: CS386)
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 5 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3: Search, A*
Review: Tree search Initialize the frontier using the starting state
Discussion on Greedy Search and A*
Discussion on Greedy Search and A*
CS 4100 Artificial Intelligence
CS344: Artificial Intelligence
Informed search algorithms
Informed search algorithms
Artificial Intelligence
CS621: Artificial Intelligence
CS621: Artificial Intelligence
Artificial Intelligence Chapter 9 Heuristic Search
A General Backtracking Algorithm
CSE 473 University of Washington
HW 1: Warmup Missionaries and Cannibals
Artificial Intelligence
Informed Search Idea: be smart about what paths to try.
State-Space Searches.
State-Space Searches.
HW 1: Warmup Missionaries and Cannibals
CS621: Artificial Intelligence
Artificial Intelligence
Informed Search Idea: be smart about what paths to try.
Supplemental slides for CSE 327 Prof. Jeff Heflin
Presentation transcript:

CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3 - Search

Algorithmics of Search

General Graph search Algorithm S ACB F ED G Graph G = (V,E)

1) Open List : S (Ø, 0) Closed list : Ø 2) OL : A (S,1), B (S,3), C (S,10) CL : S 3) OL : B (S,3), C (S,10), D (A,6) CL : S, A 4) OL : C (S,10), D (A,6), E (B,7) CL: S, A, B 5) OL : D (A,6), E (B,7) CL : S, A, B, C 6) OL : E (B,7), F (D,8), G (D, 9) CL : S, A, B, C, D 7) OL : F (D,8), G (D,9) CL : S, A, B, C, D, E 8) OL : G (D,9) CL : S, A, B, C, D, E, F 9) OL : Ø CL : S, A, B, C, D, E, F, G

Description of GGS (Principles of AI, N.J. Nilsson, 1980) 1. Create a search graph G, consisting solely of the start node S. Put S on a list called OPEN 2. Create a list called CLOSED that is initially empty 3. LOOP: if OPEN is empty exit with failure 4. Select the first node on OPEN, remove it from OPEN and put it on CLOSED. Call this node n 5. If n is a goal node, exit successfully with the solution obtained by tracing a path along the pointers n to s in G (pointers are established in step 7)

Description of GGS (contd) 6. Expand node n, generating the set M of its successors that are not ancestors of n. Install these members of M as successors of n in G 7. Establish a pointer to n from those members of M that were not already in G (i.e., not already on either OPEN or CLOSED). Add these members of M to OPEN. For each member of M that was already on OPEN or CLOSED, decide whether or not to redirect its pointer to n. For each member of M already on CLOSED, decide for each of its descendents in G whether or not to redirect its pointer 8. Reorder the list OPEN, either according to some arbitrary scheme or according to heuristic merit 9. Go LOOP

Redirection of pointers for nodes already in CLOSED (before expanding 1) S

Redirection of pointers for nodes already in CLOSED (after expanding 1) S

Search building blocks  State Space : Graph of states (Express constraints and parameters of the problem)  Operators : Transformations applied to the states.  Start state : S 0 (Search starts from here)  Goal state : {G} - Search terminates here.  Cost : Effort involved in using an operator.  Optimal path : Least cost path

Examples Problem 1 : 8 – puzzle S0S0 2 G Tile movement represented as the movement of the blank space. Operators: L : Blank moves left R : Blank moves right U : Blank moves up D : Blank moves down C(L) = C(R) = C(U) = C(D) = 1

A*

A* Algorithm – Definition and Properties f(n) = g(n) + h(n) The node with the least value of f is chosen from the OL. f*(n) = g*(n) + h*(n), where, g*(n) = actual cost of the optimal path (s, n) h*(n) = actual cost of optimal path (n, g) g(n) ≥ g*(n) By definition, h(n) ≤ h*(n) S s n goal State space graph G g(n) h(n)

8-puzzle: heuristics sng Example: 8 puzzle h*(n) = actual no. of moves to transform n to g 1.h 1 (n) = no. of tiles displaced from their destined position. 2.h 2 (n) = sum of Manhattan distances of tiles from their destined position. h 1 (n) ≤ h*(n) and h 1 (n) ≤ h*(n) h* h2h2 h1h1 Comparison

Admissibility: An algorithm is called admissible if it always terminates and terminates in optimal path Theorem: A* is admissible. Lemma: Any time before A* terminates there exists on OL a node n such that f(n) < f*(s) Observation: For optimal path s → n 1 → n 2 → … → g, 1.h*(g) = 0, g*(s)=0 and 2.f*(s) = f*(n 1 ) = f*(n 2 ) = f*(n 3 ) = f*(g) A* Algorithm- Properties

f*(n i ) = f*(s),n i ≠ s and n i ≠ g Following set of equations show the above equality: f*(n i ) = g*(n i ) + h*(n i ) f*(n i+1 ) = g*(n i+1 ) + h*(n i+1 ) g*(n i+1 ) = g*(n i ) + c(n i, n i+1 ) h*(n i+1 ) = h*(n i ) - c(n i, n i+1 ) Above equations hold since the path is optimal. A* Properties (contd.)

Admissibility of A* A* always terminates finding an optimal path to the goal if such a path exists. Intuition S g(n) n h(n) G 1) In the open list there always exists a node n such that f(n) <= f*(S). 2) If A* does not terminate, the f value of the nodes expanded become unbounded. 1) and 2) are together inconsistent Hence A* must terminate

Lemma Any time before A* terminates there exists in the open list a node n' such that f(n') <= f*(S) S n1n1 n2n2 G Optimal path For any node n i on optimal path, f(n i ) = g(n i ) + h(n i ) <= g(n i ) + h*(n i ) Also f*(n i ) = f*(S) Let n' be the fist node in the optimal path that is in OL. Since all parents of n' have gone to CL, g(n') = g*(n') and h(n') <= h*(n') => f(n') <= f*(S)

If A* does not terminate Let e be the least cost of all arcs in the search graph. Then g(n) >= e.l(n) where l(n) = # of arcs in the path from S to n found so far. If A* does not terminate, g(n) and hence f(n) = g(n) + h(n) [h(n) >= 0] will become unbounded. This is not consistent with the lemma. So A* has to terminate.

2 nd part of admissibility of A* The path formed by A* is optimal when it has terminated Proof Suppose the path formed is not optimal Let G be expanded in a non-optimal path. At the point of expansion of G, f(G) = g(G) + h(G) = g(G) + 0 > g*(G) = g*(S) + h*(S) = f*(S) [f*(S) = cost of optimal path] This is a contradiction So path should be optimal

Theorem A version A 2 * of A* that has a “better” heuristic than another version A 1 * of A* performs at least “as well as” A 1 * Meaning of “better” h 2 (n) > h 1 (n) for all n Meaning of “as well as” A 1 * expands at least all the nodes of A 2 * h*(n) h 2 *(n) h 1 *(n) For all nodes n, except the goal node

Proof by induction on the search tree of A 2 *. A* on termination carves out a tree out of G Induction on the depth k of the search tree of A 2 *. A 1 * before termination expands all the nodes of depth k in the search tree of A 2 *. k=0. True since start node S is expanded by both Suppose A 1 * terminates without expanding a node n at depth (k+1) of A 2 * search tree. Since A 1 * has seen all the parents of n seen by A 2 * g 1 (n) <= g 2 (n) (1)

k+1 S G Since A 1 * has terminated without expanding n, f 1 (n) >= f*(S) (2) Any node whose f value is strictly less than f*(S) has to be expanded. Since A 2 * has expanded n f 2 (n) <= f*(S) (3) From (1), (2), and (3) h 1 (n) >= h 2 (n) which is a contradiction. Therefore, A 1 * has to expand all nodes that A 2 * has expanded. Exercise If better means h 2 (n) > h 1 (n) for some n and h 2 (n) = h 1 (n) for others, then Can you prove the result ?

Lab assignment Implement A* algorithm for the following problems: 8 puzzle Missionaries and Cannibals Black and White tiles 3 black and 3 white tiles are given in some initial configuration. Aim is to arrange the tiles such that all the white tiles are to the left of all the black tiles. The cost of a translation is 1 and cost of a jump is 2. Specifications: Try different heuristics and compare with baseline case, i.e., the breadth first search. Violate the condition h ≤ h*. See if the optimal path is still found. Observe the speedup.