Metallicity and Black Hole Masses of Redshift 6 Quasars Jaron Kurk (MPIA, D) The evening star (Mucha, 1902) The moon (Mucha, 1902) Fabian Walter, Dominik.

Slides:



Advertisements
Similar presentations
J. Sulentic -- IAA - CSIC P. Marziani -- OA Padova – INAF A. Del Olmo – IAA - CSIC I. Plauchu-Frayn – UNAM, Ensenada.
Advertisements

Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Marianne Vestergaard Dark Cosmology Centre, Copenhagen First Galaxies, Quasars, and GRBs, June Determining Black Hole Masses in Distant Quasars.
1 Reverberation Mapping of the Broad-Line Region Bradley M. Peterson The Ohio State University Collaborators: M. Bentz, S. Collin, K. Denney, L.-B. Desroches,
COEVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR HOST GALAXIES...OR: CHICKEN, EGG OR BOTH? Jari Kotilainen Tuorla Observatory, University of Turku, Finland.
JWST Science 4-chart version follows. End of the dark ages: first light and reionization What are the first galaxies? When did reionization occur? –Once.
The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
The Most Distant Quasars: Probing the End of Cosmic Dark Ages Xiaohui Fan Steward Observatory The University of Arizona.
On the geometry of broad emission region in quasars Roberto Decarli Turin - May, 20 th, 2008 Università degli Studi dell’Insubria Dipartimento di Fisica.
Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching.
Compiled quasar catalog from LAMOST DR1
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) Alice E. Shapley (UCLA) Crystal L. Martin (UCSB) Alison.
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) Alice E. Shapley (UCLA) Crystal L. Martin (UCSB) Alison.
Luminous obscured quasars in the HELLAS2XMM survey: the Spitzer perspective Cristian Vignali Dipartimento di Astronomia, Universita`degli Studi di Bologna.
Abundances in the BLR Nathan Stock February 19, 2007.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
THE MODERATELY LARGE SCALE STRUCTURE OF QUASARS
The line-of-sight towards GRB at z = 2.66: Probing matter at stellar, galactic and intergalactic scales Palli Jakobsson Astronomical Observatory.
GRBs as Probes of First Light and the Reionization History of the Universe D. Q. Lamb (U. Chicago) Conference on First Light and Reionization Irvine, CA,
PALM3K Review PALM3K Review Caltech Nov 12 th, 2007.
Natalie RoeSNAP/SCP Journal Club “Identification of Type Ia Supernovae at Redshift 1.3 and Beyond with the Advanced Camera for Surveys on HST” Riess, Strolger,
An Accretion Disc Model for Quasar Optical Variability An Accretion Disc Model for Quasar Optical Variability Li Shuang-Liang Li Shuang-Liang Shanghai.
Optical Spectroscopy of Distant Red Galaxies Stijn Wuyts 1, Pieter van Dokkum 2 and Marijn Franx 1 1 Leiden Observatory, P.O. Box 9513, 2300RA Leiden,
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
The Black-Hole – Halo Mass Relation and High Redshift Quasars Stuart Wyithe Avi Loeb (The University of Melbourne) (Harvard University) Fan et al. (2001)
Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
The Building Up of the Black Hole Mass- Stellar Mass Relation Alessandra Lamastra collaborators: Nicola Menci 1, Roberto Maiolino 1, Fabrizio Fiore 1,
Sources of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Beijing,
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
Scaling relations of spheroids over cosmic time: Tommaso Treu (UCSB)
IAU Jong-Hak Woo Univ. California Santa Barbara Collaborators: Tommaso Treu (UCSB), Matt Malkan (UCLA), & Roger Blandford (Stanford) Cosmic Evolution.
Local SMBH and Galaxy Correlations M bul / M BH  800 M BH -σ* relation (Gebhardt et al. 2000, Ferrarese & Merritt 2000) (e.g. Kormendy & Richstone 1995,
Study Mg II quasar absorption line systems in order to understand the kinematics of halos probing distances out to 70 kpcs from the galaxies. Therefore.
Surveying the Universe with SNAP Tim McKay University of Michigan Department of Physics Seattle AAS Meeting: 1/03 For the SNAP collaboration.
Super-massive Black Holes of Quasars at World’s End Myungshin Im (Seoul National University) Youichi Ohyama (ISAS & ASIAA) Minjin Kim, Induk Lee, H. M.
University of Leicester, UK X-ray and Observational Astronomy (XROA) Group Estelle Pons - The X-ray Universe June 2014.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Black Hole - Bulge Relation of High Redshift Quasars Xue-Bing Wu (Dept. of Astronomy, Peking University)
AGN Surveys Phil Outram University of Durham 17 th February 2005.
Deborah Dultzin-Hacyan
The Prevalence and Properties of Outflowing Galactic Winds at z = 1 Katherine A. Kornei (UCLA) Alice Shapley, Crystal Martin, Alison Coil ETH Zurich February.
GMT2010 Workshop 12 Years Ago, JWST (NGST) Deep Field Simulation (2’ x 2’) Im & Stockman (1998)
COSMIC DOWNSIZING and AGN METALLICITY at HIGH REDSHIFT Roberto Maiolino INAF - Oss. Arcetri & Oss. Roma Tohru Nagao INAF - Oss. Arcetri & NAOJ Alessandro.
From Avi Loeb reionization. Quest to the Highest Redshift.
Discovery of a 12 Billion Solar Mass Black Hole at Redshift 6.3 and its Challenge to the Black Hole/Galaxy Coevolution at Cosmic Dawn Xue-Bing WU Kavli.
The dependence on redshift of quasar black hole masses from the SLOAN survey R. Decarli Università dell’Insubria, Como, Italy A. Treves Università dell’Insubria,
The Evolution of Galaxies: From the Local Group to the Epoch of Reionization Fabian Walter National Radio Astronomy Observatory.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Quasar Surveys -- From Sloan to SNAP
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
The M BH -  star relation at the highest redshifts Fabian Walter (MPIA)
High-Redshift Quasars Probing Early Star Formation Matthias Dietrich The Ohio State University Department of Astronomy The CCAPP Symposium 2009 – October.
Accretion #3 When is the thin disk model valid? Reynolds number, viscosity Time scales in disk BH spectra Using X-ray spectra to determine BH mass and.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Mitesh Patel Co-Authors: Steve Warren, Daniel Mortlock, Bram Venemans, Richard McMahon, Paul Hewett, Chris Simpson, Rob Sharpe
AKARI Spectroscopic Study of the Rest-frame Optical Spectra of Quasars at 3.5 < z < 6.5 Hyunsung Jun¹, Myungshin Im¹, Hyung Mok Lee², and the QSONG team.
Nature of Broad Line Region in AGNs Xinwen Shu Department of Astronomy University of Science and Technology of China Collaborators: Junxian Wang (USTC)
Massive galaxies in massive datasets M. Bernardi (U. Penn)
Biases in Virial Black Hole Masses: an SDSS Perspective
Xiaohui Fan University of Arizona June 21, 2004
The Most Distant Quasars
The SAURON Survey - The stellar populations of early-type galaxies
Jelena Kovačević Dojčinović, Luka Č. Popović
Constraints on Star Forming Galaxies at z>6.5
Presentation transcript:

Metallicity and Black Hole Masses of Redshift 6 Quasars Jaron Kurk (MPIA, D) The evening star (Mucha, 1902) The moon (Mucha, 1902) Fabian Walter, Dominik Riechers (MPIA, D) Laura Pentericci (Monte Porzio, I) Xiaohui Fan (Steward, AZ) In the Universe at z > 6.0  0.5 In the Universe at z > 6

Introduction QSOs are most luminous objects known close to reionization epoch Once thought to be possible sources of reionization Size of H II spheres are probes of ionization state Driven by massive black holes, hosted by the (progenitors) of massive galaxies and therefore within massive dark matter halos NIR spectroscopy to study –BH masses –enrichment –more accurate redshifts

Introduction J z = 6.4 (Barth et al. 2003) J z = 5.8 J z = 6.3 J z = 5.8 (Freudling et al. 2003) Fig. by G. Djorgovski et al. J z = 6.3 J z = 5.8 J z = 6.2 J z = 6.4 J z = 6.0 (Maiolino et al. 2004) J z = 6.3 J z = 6.0 (Pentericci et al. 2002) J z = 6.4 (Willott et al. 2003)

Introduction Fig. by G. Djorgovski et al. J z = 5.9 J z = 5.8 J z = 6.3 J z = 6.0 J z = 6.0 (Kurk et al., in prep.) Large(r) sample with higher S/N and coverage of both C IV and Mg II

NIR spectroscopy Sample of five QSOs at z > 5.8 observable with VLT ISAAC MR spectroscopy in SZ, J, and K bands T exp ~ 3 hours per object per band QSOz*zReference J Fan et al. (2001) J Fan et al. (2001) J Fan et al. (2004) J Fan et al. (2001) J Fan et al. (2004)

Spectroscopy of emission lines From spectroscopy of 1400 < < 3600 Å, one can derive –metallicy from Fe II / Mg II ratios, but not trivial –independent measurements of BH mass –accurate redshift for molecular line follow-up –power-law slope of continuum –absorption by intervening or co-spatial gas

Long spectrum (hidden title) Kz’SZ Fan et al.

Mean SDSS QSO Spectrum Vanden Berk et al. (2001) PL-slope  = z = _

SDSS Iron Template (hidden title) Vanden Berk et al. (2001) Power-law continuum Balmer continuum SDSS “Fe II ” template

Vestergaard & Wilkes Fe II template FeII emission under MgII line Sigut & Pradhan (2003) Vestergaard & Wilkes (2001)

Smoothed Vestergaard template Mean SDSS QSO template Mg II line Fe II template Comparison

ISAAC MR K-band Mg II spectra

SDSS “FeII” template Simultaneous fit of power-law continuum, Balmer pseudo- continuum and template Mg II spectra

Vestergaard template Simultaneous fit of power-law continuum, Balmer pseudo- continuum and template Mg II spectra

Mg II line fit After subtraction of continua and template Mg II spectra

C IV spectra SZ and J band spectra

C IV spectra SZ and J band spectra Lorentzian curves fitted with underlying polynomial

Long spec again (hidden title)

Long spec with fit (hidden title)

Redshifts C IV emission 0 <  v < 4000 km s -1 blueward of Mg II Mg II and Ly  can differ by  z = 0.02 New redshift accuracy on the order of  z ~ QSOz REF z Mg II z FE II z C IV J J J J J

Black Holes Masses Mg II McLure & Jarvis (2002) C IV Vestergaard (2002) Edd Wandel, Peterson & Malkan (1999)

Black Holes Masses QSOz REF M BH,Mg II M BH,C IV M BH,Edd J J J J J Black hole masses in 10 9 M 

Fe II/ Mg II ratios 2.2 < Fe II /Mg II < 4.7, consistent with solar metallicity Dietrich et al. (2003)  Dietrich et al. (2003)  Wills, Netzer, & Wills (1985)  Thompson et al. (1999)   Iwamuro et al. (2002)  Freudling et al. (2003)

Conclusions Black Hole masses from 0.2 to M  –not only the most massive galaxies –therefore M BH -  BULGE relation can hold up to the highest redshifts No evolution in FeII/MgII ratios up to z = 6 –star formed at z > 10 –or indication for decline? BH masses differ much more than enrichment Accurate redshifts for follow-up and better H II region determination Not mentioned: power-law slopes, absorption by intervening gas and/or gas within the system The morning star (Mucha, 1902) The pole star (Mucha, 1902)