Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments.

Slides:



Advertisements
Similar presentations
Changing the living world
Advertisements

Ameer Effat M. Elfarash Dept. of Genetics Fac. of Agriculture, Assiut Univ. From Gene to Protein (an overview)
DNA Technology & Gene Mapping Biotechnology has led to many advances in science and medicine including the creation of DNA clones via recombinant clones,
Chapter 14: Genetic Engineering -Modification of the DNA of an organism to produce new genes with new characteristics.
Gene Regulation Ch. 18. Precursor Feedback inhibition Enzyme 1 Enzyme 2 Enzyme 3 Tryptophan (a) (b) Regulation of enzyme activity Regulation of enzyme.
Ch 12. Lac Operon 0Kh4&feature=relatedhttp:// 0Kh4&feature=related
Ch 12. Researchers can insert desired genes into plasmids, creating recombinant DNA and insert those plasmids into bacteria Bacterium Bacterial chromosome.
Gene Cloning Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Most methods for cloning pieces.
Chapter 20: Biotechnology Ms. Whipple Brethren Christian High School.
Biotechnology Chapter 20.
Manipulating the Genome: DNA Cloning and Analysis 20.1 – 20.3 Lesson 4.8.
DNA TECHNOLOGY AND THE HUMAN GENOME. MOST DNA TECHNOLOGY IS NATURALLY OCCURING PHENOMENA THAT WE MANIPULATE TO SERVE OUR CURIOUSITY AND INTEREST – BACTERIAL.
DNA TECHNOLOGY DNA recombination or genetic engineering is the direct manipulation of genes for practical purposes.
Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments.
Chapter 12 DNA Technology February 27, DNA technology has led to advances in –creation of genetically modified crops and –identification and treatment.
Genetic Engineering Do you want a footer?.
Objective 2: TSWBAT describe the basic process of genetic engineering and the applications of it.
CHAPTER 20 BIOTECHNOLOGY: PART I. BIOTECHNOLOGY Biotechnology – the manipulation of organisms or their components to make useful products Biotechnology.
Avery, MacLeod, and McCarty 1944 Used bacteria from Griffith’s mouse experiment Denatured proteins in membrane and discovered that the DNA still could.
GENE TECHNOLOGY Chapter 8.
N Understanding and Manipulating Genomes n One of the greatest achievements of modern science –Has been the sequencing of the human genome, which was largely.
1 Genetics Faculty of Agriculture Instructor: Dr. Jihad Abdallah Topic 13:Recombinant DNA Technology.
What are the Techniques of Biotechnology ? Restriction Endonucleases: enzymes that cut DNA at specific codes (nucleotide sequences) –Can buy from suppliers:
Technological Solutions. In 1977 Sanger et al. were able to work out the complete nucleotide sequence in a virus – (Phage 0X174) This breakthrough allowed.
© 2012 Pearson Education, Inc. Lecture by Edward J. Zalisko PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor,
Manipulating DNA.
AP Biology Biotechnology Part 3. Bacterial Cloning Process Bacterium Bacterial chromosome Plasmid Gene inserted into plasmid Cell containing gene of interest.
DNA Technology.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Items for tomorrow and beyond: 1) Study/read captions for all figures within Chapter 20 2) Read Section 20.5 (applications of biotechnology) on pp
Biotechnology.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Molecular Basis of Inheritance
Fig Fig Fig Fig Fig
12.10 Gel electrophoresis sorts DNA molecules by size
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: The DNA Toolbox In recombinant DNA, nucleotide sequences from.
Genetic Engineering Genetic engineering is also referred to as recombinant DNA technology – new combinations of genetic material are produced by artificially.
Chapter 20: DNA Technology and Genomics - Lots of different techniques - Many used in combination with each other - Uses information from every chapter.
DNA Technology Ch. 20. The Human Genome The human genome has over 3 billion base pairs 97% does not code for proteins Called “Junk DNA” or “Noncoding.
Copyright © 2009 Pearson Education, Inc. Head Tail fiber DNA Tail.
Biotechnology The manipulation of organisms or their genes for –Basic biological research –Medical diagnostics –Medical treatment (gene therapy) –Pharmaceutical.
Chapter 20: Part 1 DNA Cloning and Plasmids
Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition – Campbell,
CHAPTER 20 BIOTECHNOLOGY. Biotechnology – the manipulation of organisms or their components to make useful products Biotechnology is used in all facets.
Gene Cloning & Creating DNA Libraries. Клонирование генов Что означает термин «клонирование»? Как происходит клонирование генов? Чем это отличается от.
DNA Replication and Repair
Gene Cloning Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Most methods for cloning pieces.
DNA Technology and Genomics
Figure 20.0 DNA sequencers DNA Technology.
Figure 20.2 Overview of gene cloning
CHAPTER 12 DNA Technology and the Human Genome
Chapter 20: DNA Technology and Genomics
DNA Tools & Biotechnology
Biotechnology: Part 1 DNA Cloning, Restriction Enzymes and Plasmids
and PowerPoint “DNA Technology,” from
DNA Technology and Genomics
Chapter 20 Biotechnology.
Chapter 14 Bioinformatics—the study of a genome
CHAPTER 12 DNA Technology and the Human Genome
DNA Tools & Biotechnology
4.4 Genetic Engineering.
AP Biology Biotechnology Part 3.
Biotechnology.
CHAPTER 20 DNA TECHNOLOGY.
AP Biology Biotechnology Part 3.
AP Biology Biotechnology Part 3.
DNA Technology and Genomics
Chapter 20: DNA Technology and Genomics
GENE TECHNOLOGY Chapter 13.
Presentation transcript:

Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments of DNA in identical copies, a process called DNA cloning © 2011 Pearson Education, Inc.

DNA Cloning and Its Applications: A Preview Most methods for cloning pieces of DNA in the laboratory share general features, such as the use of bacteria and their plasmids Plasmids are small circular DNA molecules that replicate separately from the bacterial chromosome Cloned genes are useful for making copies of a particular gene and producing a protein product © 2011 Pearson Education, Inc.

Gene cloning involves using bacteria to make multiple copies of a gene Foreign DNA is inserted into a plasmid, and the recombinant plasmid is inserted into a bacterial cell Reproduction in the bacterial cell results in cloning of the plasmid including the foreign DNA This results in the production of multiple copies of a single gene © 2011 Pearson Education, Inc.

Figure 20.2 Bacterium Bacterial chromosome Plasmid 2134 Gene inserted into plasmid Cell containing gene of interest Recombinant DNA (plasmid) Gene of interest Plasmid put into bacterial cell DNA of chromosome (“foreign” DNA) Recombinant bacterium Host cell grown in culture to form a clone of cells containing the “cloned” gene of interest Gene of interest Protein expressed from gene of interest Protein harvested Copies of gene Basic research and various applications Basic research on protein Basic research on gene Gene for pest resistance inserted into plants Gene used to alter bacteria for cleaning up toxic waste Protein dissolves blood clots in heart attack therapy Human growth hormone treats stunted growth

Figure 20.2a Bacterium Bacterial chromosome Plasmid 21 Gene inserted into plasmid Cell containing gene of interest Recombinant DNA (plasmid) Gene of interest Plasmid put into bacterial cell DNA of chromosome (“foreign” DNA) Recombinant bacterium

Figure 20.2b Host cell grown in culture to form a clone of cells containing the “cloned” gene of interest Gene of interest Protein expressed from gene of interest Protein harvested Copies of gene Basic research and various applications 34 Basic research on protein Basic research on gene Gene for pest resistance inserted into plants Gene used to alter bacteria for cleaning up toxic waste Protein dissolves blood clots in heart attack therapy Human growth hormone treats stunted growth

Using Restriction Enzymes to Make Recombinant DNA Bacterial restriction enzymes cut DNA molecules at specific DNA sequences called restriction sites A restriction enzyme usually makes many cuts, yielding restriction fragments The most useful restriction enzymes cut DNA in a staggered way, producing fragments with “sticky ends.” © 2011 Pearson Education, Inc. Animation: Restriction Enzymes

Sticky ends can bond with complementary sticky ends of other fragments DNA ligase is an enzyme that seals the bonds between restriction fragments © 2011 Pearson Education, Inc.

Figure Recombinant DNA molecule One possible combination DNA ligase seals strands DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. Restriction enzyme cuts sugar-phosphate backbones. Restriction site DNA Sticky end GAATTC CTTAAG CTTAA G AATTC G G G CTTAA G G G G AATT C C TTAA

Cloning a Eukaryotic Gene in a Bacterial Plasmid In gene cloning, the original plasmid is called a cloning vector A cloning vector is a DNA molecule that can carry foreign DNA into a host cell and replicate there © 2011 Pearson Education, Inc.

Figure 20.4 Bacterial plasmid TECHNIQUE RESULTS amp R gene lacZ gene Restriction site Hummingbird cell Sticky ends Gene of interest Humming- bird DNA fragments Recombinant plasmidsNonrecombinant plasmid Bacteria carrying plasmids Colony carrying non- recombinant plasmid with intact lacZ gene Colony carrying recombinant plasmid with disrupted lacZ gene One of many bacterial clones

Figure 20.4b RESULTS Bacteria carrying plasmids Colony carrying non- recombinant plasmid with intact lacZ gene Colony carrying recombinant plasmid with disrupted lacZ gene One of many bacterial clones

Restriction fragments of DNA can be sorted by size Gel electrophoresis sorts DNA molecules by size Figure Mixture of DNA molecules of different sizes Power source Gel Glass plates Longer molecules Shorter molecules Completed gel

Screening a Library for Clones Carrying a Gene of Interest A clone carrying the gene of interest can be identified with a nucleic acid probe having a sequence complementary to the gene This process is called nucleic acid hybridization © 2011 Pearson Education, Inc.

A probe can be synthesized that is complementary to the gene of interest For example, if the desired gene is – Then we would synthesize this probe © 2011 Pearson Education, Inc. 5 3  CTCAT CACCGGC  5 3 G A G T A G T G G C C GG A G T A G T G G C C G

The DNA probe can be used to screen a large number of clones simultaneously for the gene of interest Once identified, the clone carrying the gene of interest can be cultured © 2011 Pearson Education, Inc.

Problems with expressing Eukaryotic genes in Bacteria Eventhough bacteria are capable of transcribing and translating eukaryotic genes, they do not have the capacity to splice exons and get rid of introns. So in order for them to be able to make a protein, an in intronless gene has to be inserted into bacteria

Figure DNA in nucleus mRNAs in cytoplasm mRNA Reverse transcriptase Poly-A tail DNA strand Primer DNA polymerase cDNA A A A T T T T T

Scientists can compare DNA sequences of different individuals based on the size of the fragments Restriction fragment analysis is a powerful method that detects differences in DNA sequences Figure 12.11A Allele 1Allele 2 w x y Cut z y DNA from chromosomes

Figure 12.11B 12 Longer fragments Shorter fragments

DNA fingerprinting can help solve crimes Connection: DNA technology is used in courts of law OTHER APPLICATIONS OF DNA TECHNOLOGY Figure 12.15A, B Defendant’s blood Blood from defendant’s clothes Victim’s blood

The polymerase chain reaction (PCR) can quickly clone a small sample of DNA in a test tube The PCR method is used to amplify DNA sequences Figure Initial DNA segment 1248 Number of DNA molecules

Recombinant cells and organisms are used to manufacture useful proteins Connection: Recombinant cells and organisms can mass-produce gene products Table 12.16