Nov. 07 2004Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.

Slides:



Advertisements
Similar presentations
1 A DIRC for GlueX Paul Mueller Oak Ridge National Laboratory and Stefan Spanier University of Tennessee, Knoxville BaBar DIRC Collaboration for the GlueX.
Advertisements

03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
SUNJI KIM, H. BHANG, M. KIM, K. TSHOO, K. TANIDA, H. FUJIOKA1, Y. SADA1, and H. ASANO1 Seoul National University, 1 Kyoto University Abstract Introduction.
Assisi – 23 June 2005 Tito Bellunato 1 Status of the LHCb RICH detector and the HPD Beauty 2005 Assisi – 23 June 2005 Tito Bellunato – Università degli.
Could CKOV1 become RICH? 1. Characteristics of Cherenkov light at low momenta (180 < p < 280 MeV/c) 2. Layout and characterization of the neutron beam.
30 March Global Mice Particle Identification Steve Kahn 30 March 2004 Mice Collaboration Meeting.
E-  identification 1. Reminder from previous presentations, questions, remarks 2. Čerenkov option 3. Study of several optical configurations 4. Conclusions.
T1008 status W.Baldini for the Ferrara and Padova SuperB-IFR Group.
Marco Musy INFN and University of Milano-Bicocca Pylos, June 2002 Aerogel as Cherenkov radiator for RICH detectors for RICH detectors.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
Leroy Nicolas, HESS Calibration results, 28 th ICRC Tsukuba Japan, August Calibration results of the first two H·E·S·S· telescopes Nicolas Leroy.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
Beam test of scintillator strips Miho NISHIYAMA Shinshu University ・ scintillator strip calorimeter ・ Kuraray scintillator strips and KNU extruded ・ the.
1 Fast Timing via Cerenkov Radiation‏ Earle Wilson, Advisor: Hans Wenzel Fermilab CMS/ATLAS Fast Timing Simulation Meeting July 17,
Status of Projectile Spectator Detector A.Kurepin (Institute for Nuclear Research, Moscow) I. Introduction to PSD. II. Conception and design. III. Development.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
Feb 10, 2005 S. Kahn -- Pid Detectors in G4MicePage 1 Pid Detector Implementation in G4Mice Steve Kahn Brookhaven National Lab 10 Feb 2005.
February 28, 2002KOPIO Collaboration Meeting1 Status of Japan Group and Beam Catcher Contents : Status of Japan Group Progress in Beam Catcher Plan in.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
THE FORWARD PROTON DETECTOR AT DZERO Gilvan Alves Lafex/CBPF 1) MOTIVATION 2) DETECTOR OPTIONS 3) FPD R&D 4) OUTLOOK Lishep 98 Lafex/CBPF Feb 17, 1998.
EAS Reconstruction with Cerenkov Photons Shower Simulation Reconstruction Algorithm Toy MC Study Two Detector Configuration Summary M.Z. Wang and C.C.
Water Tank as the Outer Muon Veto Mingjun Chen
Aerogel counter with a Fresnel lens
The calibration and alignment of the LHCb RICH system Antonis Papanestis STFC - RAL for the LHCb Collaboration.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
KEK BT Summary &Plan Shinshu University Miho Nishiyama.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
KOPIO Catcher System RSVP Baseline Review Brookhaven National Laboratory April 20, 2005 Noboru Sasao / Tadashi Nomura (Kyoto U.)
KEK beam test in May 2005 Makoto Yoshida Osaka Univ. MICE Frascati June 27 th, 2005.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
KEK Test Beam Phase I (May 2005) Makoto Yoshida Osaka Univ. MICE-FT Daresbury Aug 30th, 2005.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
KOPIO Catcher System RSVP Preliminary Baseline Review Brookhaven National Laboratory April 6, 2005 Tadashi Nomura (Kyoto U.)
6-8 March, 2006T. Workshop on "Mass Origin and Supersymmetry Physics"1 Development of an Aerogel-based Photon Detector T. Nomura (Kyoto Univ.)
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Scan ~100 bar entry positions with laser diode measures transmitted intensity (relative to reference intensity) determine attenuation length (Λ) by aiming.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Location of the LW detector- Simulation of the LW signals Lawrence Deacon RHUL ATF2 meeting August 23 rd 2006 KEK.
Status of E14 G.Y.Lim IPNS, KEK. E14 Experiment Step-by-step approach to precise measurement of Br( K L    ) KEK-PS E391a J-PARC E14 (Step-1) J-PARC.
May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 KOPIO Beam Catcher Tadashi Nomura (Kyoto U.) Contents –What is Beam Catcher? –Concept.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
FARICH status E.A.Kravchenko Budker INP, Novosibirsk, Russia.
g beam test of the Liquid Xe calorimeter for the MEG experiment
Prospect of SiPM application to TOF in PANDA
KOPIO meeting, T. Nomura (Kyoto U.)
Ultra fast SF57 based SAC M. Raggi Sapienza Università di Roma
Gamma-ray Large Area Space Telescope ACD Final Performance
Comparison of GAMMA-400 and Fermi-LAT telescopes
IHEP group Shashlyk activity towards TDR
Gamma-ray Large Area Space Telescope
KM2A Electron Detector Optimization
Upgrade of LXe gamma-ray detector in MEG experiment
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
Particle Identification in LHCb
Upgrade of LXe gamma-ray detector in MEG experiment
Multianode Photo Multipliers for Ring Imaging Cherenkov Detectors
Kazuya Aoki For the PHENIX Collaborations. Kyoto Univ. / RIKEN
GEANT Simulations and Track Reconstruction
ACD transparency - gaps between tiles - holes in tile to attach them
Presentation transcript:

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents 1.What is Beam Catcher? 2.Basic Design 3.Expected Performance 4.Aerogel Quality Control System

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop2 Beam Catcher in the KOPIO experiment KOPIO experiment measures K L   0  mode Identification : Detect   and nothing    veto 1. What is Beam Catcher? Vetoing extra particle is predominant defense to BG

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop3 Beam Catcher Catcher Module Lead Converter 1. What is Beam Catcher? Photon veto which covers beam core region under high neutron rate –~10GHz (>10MeV) Need to be… –efficient to  rays : 300MeV –inefficient to neutrons : 0.8GeV Aerogel Cherenkov + distributed geometry –suppress neutron efficiency

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop4 Beam Catcher – MC Event Display Event Display for  Event Display for neutron Top View Side View Secondary particles are created isotropically  Can distinguish  from neutron using geometry Shower spreads forward 1. What is Beam Catcher?

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop5 Design of Beam Catcher – Single Module Lead converter –Size : 30 x 30 cm, 2mm thick Aerogel –Size : 30 x 30 cm, 5 cm thick –Refractive index : n ~ 1.05 Mirror –flat mirror Funnel –Winston cone type PMT –5 inch PMT 2. Basic Design

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop6 Top View Design of Beam Catcher - Configuration Tapered configuration –10 modules (front layer) –20 modules (back layer) –25 layers Number of modules –370 modules Coincidence condition 2. Basic Design

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop7 Simulation – Efficiency for  Coincidence efficiency for   energy (GeV) efficiency efficiency for  Y position (cm) efficiency 3. Expected Performance vertical position dependence efficient region :±7cm beam size

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop8 Simulation – Insensitivity to neutrons (1) efficiency neutron kinetic energy (GeV) coincidence efficiency for n Insensitivity to neutrons number of false veto neutron yield →2.8 % false veto prob. coincidence count 3. Expected Performance

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop9 Simulation – Insensitivity to neutrons (2) Single count rate by neutrons single count rate by n neutron spectrum single count rate →single rate ~ : 600kHz / module 3. Expected Performance

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop10 Aerogel Quality Control System (i) Transmittance –LED (light source) + PMT (photo detector) (ii) Cherenkov light Yield –Solenoid Spectrometer (as  source) + mirror + PMT It is important to control optical properties of aerogel 4. Aerogel Quality Control System

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop11 Masked by black paper with a 2mmX2mm hole UV,BLUE,GREEN, YELLOW,RED 5-COLORS PMT with 2mm hole mask detects LED lightPMT with 2mm hole mask detects LED light 30mm x 30mm area is scanned at 2mm interval30mm x 30mm area is scanned at 2mm interval by moving X-Y stage position dependence of transmittance can be measuredposition dependence of transmittance can be measured Setup for Transmittance Measurement Aperture Aperture PMT on XY stage Aerogel on X-Y stage 4. Aerogel Quality Control System : (i) transmittance

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop12 Transmittance -Rayleigh scattering- λ(nm) (nm) A=0.93 CT=  m 4 A=0.82 CT=  m 4 Fit the function A:Absorption CT:Rayleigh Scattering parameter 1-A:Absorption CT:Rayleigh Scattering parameter Absorption also increase The Tile with rough surface n=1.03 The tile with Clean surface n=1.03 transmittance Note that Rayleigh scattering is dominant in Aerogel Two parameters, A and CT, are used as the input to our MC simulation. Can it predict correct light yield? 4. Aerogel Quality Control System : (i) transmittance

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop13 Measurement of Cherenkov Light Yield 4. Aerogel Quality Control System : (ii) light yield To measure Cherenkov light yield… Solenoid Magnet Spectrometer –  source + gap type solenoid magnet Setup for light yield measurement –Spectrometer + mirror + PMT

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop14 Solenoid Magnet Spectrometer  source + Gap-type Solenoid Magnet ==> Spectrometer r IRON Electron rotate by Bz COIL GAP Concept of Electron trajectory in this magnet Ru 0.8 m Magnetic Field is strong near the gap POINT TWO MAGNETS Large acceptance High Resolution parallel e- beam along Z- axis We can get monochromatic electron beam Variable Energy up to a few MeV Beam intensity of ~30 4. Aerogel Quality Control System :  (ii) light yield

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop15 Spec of the Spectrometer Resolution(%) 1460Energy ( KeV ) 6.36.3 10.1Resolution(%) Energy ( KeV ) Spectrum of focused electron [ keV ] Energy spectrum of 106 Ru with and without magnet [A][A][A][A] Magnet Current VS peak e - energy ● data ▲ Expectation [ keV ] 4. Aerogel Quality Control System : (ii) light yield

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop16 from Spectrometer Measurement of Cherenkov Yield by the Spectrometer Cherenkov image on PMT  source  source Ru(3.541MeV) 106 Ru(3.541MeV) Setup MC 5inchPMT Two trigger Scintillators are placed downstream of 10f hole at the mirror surface 4. Aerogel Quality Control System : (ii) light yield

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop17 Cherenkov Yield Energy Dependence Measurement1 ▲ GEANT ● DATA ▲ GEANT ● DATA n= 1.0 3 TR=67 n= 1.0 5 TR=69 We measure the Cherenkov light yield with changing the energy of electron We measure the Cherenkov light yield with changing the energy of electron Incident Energy of electron P.E P.E Example of the results for two aerogel samples (thickness=11mm) with similar transmittance but different refractive index 4. Aerogel Quality Control System : (ii) light yield

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop18 Summary Beam Catcher –Photon detector positioned in neutral beam  Need to have enough g efficiency  Need to insensitive to neutrons Design –Pb + Aerogel Cherenkov counter with distributed geometry Expected Performance 300MeV / 800MeV  ~3% false veto prob. Aerogel quality control system –Transmittance –Cherenkov light yield Summary

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop19 Extras

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop20 Beam Catcher – Prototype Test Light yield – using  + Neutron inefficiency - using proton in place of neutrons Prototype Module Light Yield Proton Efficiency Data matches MC very well

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop21 Simulation – Insensitivity to K L (1) Coincidence efficiency for K L False veto probability by K L → ~2.3% false veto prob.

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop22 Simulation – Insensitivity to K L (2) → single rate : ~330 kHz Single count rate by K L

Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop23 Cherenkov Yield Energy Dependence Measurement2 ▲ GEANT ● DATA n=1.03 TR=85 ▲ GEANT ● DATA 1.5 A=0.82 CT=0.0094μm 4 A=0.94 CT=0.0044μm Incident Energy of electron P.E P.E Example of the results for two aerogel samples (thickness=11mm) with the same refractive index but different transmittance 4. Aerogel Quality Control System