I. Physical Properties Ch. 11 - Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,

Slides:



Advertisements
Similar presentations
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Advertisements

I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant,
I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described.
I. Physical Properties (p )
Behavior of Gases. Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide Gas molecules save your life! 2 NaN.
Kinetic Molecular Theory. What if… b Left a basketball outside in the cold… would the ball appear to be inflated or deflated? b Which picture box do you.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant, random, straight-line.
Chapter Pressure Macro-Scale Pressure is the amount of force exerted over a given area  Familiar unit is “pounds per square inch” or psi (tire.
I. Physical Properties Ch 12.1 & 13 Gases. Kinetic Molecular Theory 1. Particles of matter are ALWAYS in motion 2. Volume of individual particles is 
Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14.
Think About This… Gas Atmosphere This is a U-Tube Manometer. The red stuff is a liquid that moves based on the pressures on each end of the tube. Based.
Gas Laws Gas Laws highly compressible. occupy the full volume of their containers. exert a uniform pressure on all inner surfaces of a container diffuse.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
C. Johannesson I. Physical Properties (p ) Ch. 10 & 11 - Gases.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
2 CHAPTER 12 GASES The Gas Laws u Describe HOW gases behave. u Can be predicted by the theory. u Amount of change can be calculated with mathematical.
The Gas Laws The Behavior of Gases. The Combined Gas Law The combined gas law expresses the relationship between pressure, volume and temperature of a.
Gases. Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each.
Properties and Measuring Variables Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are.
I. Behavior of Gases (Read p ) Topic 4- Gases S.Panzarella.
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
A theory concerning the thermodynamic behavior of matter, especially the relationships among pressure, volume, and temperature in gases. Kinetic Molecular.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Ch Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. The Gas Laws Ch Gases. A. Boyle’s Law b The pressure and volume of a gas are inversely related at constant mass & temp P V P 1 V 1 = P 2 V 2.
? Gases Chapter 4. ? Kinetic Molecular Theory Particles in an Ideal Gases…  have no volume.  have elastic collisions.  are in constant, random, straight-line.
AssignmentAssignment b Complete pre-assessment test. b Read Chapter 10, pp , and define vocabulary.
III. Ideal Gas Law (p , ) Ch. 10 & 11 - Gases.
C. Johannesson III. Ideal Gas Law (p , ) Ch. 10 & 11 - Gases.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have elastic.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
I. Physical Properties. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
I. Physical Properties Gases. A. Kinetic Molecular Theory b kinetic-molecular theory: (def) theory of the energy of particles and the forces that.
Physical Properties Ch. 10 & 11 - Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
I. Physical Properties Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are.
Gases Gas Animations. Kinetic Molecular Theory Particles in an ideal gas… –have no volume. –have elastic collisions. –are in constant, random, straight-line.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Ch Gases.  To describe a gas fully you need to state 4 measurable quantities:  Volume  Temperature  Number of molecules  pressure.
Gases & Kinetic Molecular Theory Kinetic molecular theory Gases Physical properties Temperature Pressure Boyles Law Charles Law Gay Lussacs Law Combined.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have.
C. Johannesson CHARACTERISTICS OF GASES Gases expand to fill any container. random motion, no attraction Gases are fluids (like liquids). no attraction.
The Gas Laws The Behavior of Gases. STPSTP b Standard Temperature and Pressure: b 273 K and 760 mm Hg b Or 0 C and 1atm.
The Gas Laws Ch. 14- Gases. Boyle’s Law P V PV = k Pressure and Volume are inversely proportional. As Volume increased, pressure decreases.
Ideal Gas Law Gases. C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids).
I. Physical Properties (p. 399 – 402, ) Ch Gases Gases notes #1 - gas properties.ppt.
I. Physical Properties I. Gases I. Gases. Nature of Gases b Gases have mass. b They can be compressed. b They completely fill their containers. b Representative.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have mass but no definite volume. have elastic collisions.
Gases I. Physical Properties.
A. Kinetic Molecular Theory
Gases.
I. Physical Properties (p )
Ch.12- Gases I. Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p )
Gases I. Physical Properties.
Gas laws.
Gases Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p. 303 – 312 in school)
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Ch Gases I. Physical Properties.
Chapter 1 Lesson 3 Mrs. Brock RJMS
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Gases Physical Properties.
Chapter 7-1, 7-2.
Gases and Laws – Unit 2 Version
Presentation transcript:

I. Physical Properties Ch Gases

A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight- line motion. don’t attract or repel each other. have an avg. KE directly related to Kelvin temperature.

B. Real Gases b Particles in a REAL gas… have their own volume attract each other b Gas behavior is most ideal… at low pressures at high temperatures in nonpolar atoms/molecules

C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction b Gases have very low densities. no volume = lots of empty space

C. Characteristics of Gases b Gases can be compressed. no volume = lots of empty space b Gases undergo diffusion & effusion. random motion

D. Temperature ºF ºC K K = ºC b Always use absolute temperature (Kelvin) when working with gases.

E. Pressure Which shoes create the most pressure?

E. Pressure b Barometer measures atmospheric pressure Mercury Barometer Aneroid Barometer

E. Pressure b Manometer measures contained gas pressure U-tube ManometerBourdon-tube gauge

E. Pressure b KEY UNITS AT SEA LEVEL kPa (kilopascal) 1 atm 760 mm Hg 760 torr 14.7 psi

F. STP Standard Temperature & Pressure 0°C 273 K 1 atm kPa -OR- STP

II. The Gas Laws Ch Gases

A. Boyle’s Law b The pressure and volume of a gas are inversely related at constant mass & temp P V PV = k

A. Boyle’s Law

V T B. Charles’ Law b The volume and absolute temperature (K) of a gas are directly related at constant mass & pressure

B. Charles’ Law

P T C. Gay-Lussac’s Law b The pressure and absolute temperature (K) of a gas are directly related at constant mass & volume

= kPV PTPT VTVT T D. Combined Gas Law P1V1T1P1V1T1 = P2V2T2P2V2T2 P 1 V 1 T 2 = P 2 V 2 T 1

GIVEN: V 1 = 473 cm 3 T 1 = 36°C = 309K V 2 = ? T 2 = 94°C = 367K WORK: P 1 V 1 T 2 = P 2 V 2 T 1 E. Gas Law Problems b A gas occupies 473 cm 3 at 36°C. Find its volume at 94°C. CHARLES’ LAW TT VV (473 cm 3 )(367 K)=V 2 (309 K) V 2 = 562 cm 3

GIVEN: V 1 = 100. mL P 1 = 150. kPa V 2 = ? P 2 = 200. kPa WORK: P 1 V 1 T 2 = P 2 V 2 T 1 E. Gas Law Problems b A gas occupies 100. mL at 150. kPa. Find its volume at 200. kPa. BOYLE’S LAW PP VV (150.kPa)(100.mL)=(200.kPa)V 2 V 2 = 75.0 mL

GIVEN: V 1 = 7.84 cm 3 P 1 = 71.8 kPa T 1 = 25°C = 298 K V2 = ?V2 = ? P 2 = kPa T 2 = 273 K WORK: P 1 V 1 T 2 = P 2 V 2 T 1 (71.8 kPa)(7.84 cm 3 )(273 K) =( kPa) V 2 (298 K) V 2 = 5.09 cm 3 E. Gas Law Problems b A gas occupies 7.84 cm 3 at 71.8 kPa & 25°C. Find its volume at STP. P  T  VV COMBINED GAS LAW

GIVEN: P 1 = 765 torr T 1 = 23°C = 296K P 2 = 560. torr T 2 = ? WORK: P 1 V 1 T 2 = P 2 V 2 T 1 E. Gas Law Problems b A gas’ pressure is 765 torr at 23°C. At what temperature will the pressure be 560. torr? GAY-LUSSAC’S LAW PP TT (765 torr)T 2 = (560. torr)(296K) T 2 = 217 K

END OF QUIZ I MATERIAL

III. Ideal Gas Law Ch Gases

V n A. Avogadro’s Principle b Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any gas

PV T VnVn PV nT A. Ideal Gas Law p. 384 = k UNIVERSALAS CONSTANT R= L  atm/mol  K R = 62.4 L  mm Hg/mol  K (torr) R=8.315 dm 3  kPa/mol  K = R You don’t need to memorize these values! Merge the Combined Gas Law with Avogadro’s Principle:

A. Ideal Gas Law UNIVERSAL GAS CONSTANT R= L  atm/mol  K R = 62.4 L  mm Hg/mol  K (torr) R=8.315 dm 3  kPa/mol  K PV=nRT You don’t need to memorize these values!

GIVEN: P = ? atm n = mol T = 16°C = 289 K V = 3.25 L R = L  atm/mol  K WORK: PV = nRT P(3.25)=(0.412)(0.0821)(289) L mol L  atm/mol  K K P = 3.01 atm C. Ideal Gas Law Problems b Calculate the pressure in atmospheres of mol of He at 16°C & occupying 3.25 L.

GIVEN: V = ? m = 85 g T = 25°C = 298 K P = kPa R = dm 3  kPa/mol  K C. Ideal Gas Law Problems b Find the volume of 85 g of O 2 at 25°C and kPa. n= 2.7 mol WORK: 85 g 1 mol = 2.7 mol g PV = nRT (104.5)V=(2.7) (8.315) (298) kPa mol dm 3  kPa/mol  K K V = 64 dm 3

Let’s Practice!! Handout p.24 Things to remember : b OMIT 5 & 6 b Convert temperatures to Kelvin (add 273) b Convert all volumes to Liters (mL to L  divide by 1000) b Use R value that matches pressure unit