Physical Properties Ch. 10 & 11 - Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,

Slides:



Advertisements
Similar presentations
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Advertisements

I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant,
III. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant,
I. Physical Properties (p )
Behavior of Gases & Kinetic Molecular Theory Unit 7 – Phase of Matter.
I. Physical Properties Ch 12.1 & 13 Gases. Kinetic Molecular Theory 1. Particles of matter are ALWAYS in motion 2. Volume of individual particles is 
Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14.
Think About This… Gas Atmosphere This is a U-Tube Manometer. The red stuff is a liquid that moves based on the pressures on each end of the tube. Based.
Physical Properties Unit 5: Gases Unit 5: Gases. StandardsStandards b 4a. Students know the random motion of molecules and their collisions with a surface.
1 Chapter 12 The Behavior of Gases Milbank High School.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
C. Johannesson I. Physical Properties (p ) Ch. 10 & 11 - Gases.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
2 CHAPTER 12 GASES The Gas Laws u Describe HOW gases behave. u Can be predicted by the theory. u Amount of change can be calculated with mathematical.
The Gas Laws u Describe HOW gases behave. u Can be predicted by the theory. The Kinetic Theory u Amount of change can be calculated with mathematical.
Gases. Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each.
Properties and Measuring Variables Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are.
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
A theory concerning the thermodynamic behavior of matter, especially the relationships among pressure, volume, and temperature in gases. Kinetic Molecular.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Ch Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
? Gases Chapter 4. ? Kinetic Molecular Theory Particles in an Ideal Gases…  have no volume.  have elastic collisions.  are in constant, random, straight-line.
Chapter 11 The Nature of Gases & Measuring Gases Pages
AssignmentAssignment b Complete pre-assessment test. b Read Chapter 10, pp , and define vocabulary.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have elastic.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
I. Physical Properties. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
I. Physical Properties Gases. A. Kinetic Molecular Theory b kinetic-molecular theory: (def) theory of the energy of particles and the forces that.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
Lesson 1: Basic Terminology This lesson reviews terms used to describe the properties and behavior of gases. NEXT MAIN MENU.
I. Physical Properties Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are.
Gases Gas Animations. Kinetic Molecular Theory Particles in an ideal gas… –have no volume. –have elastic collisions. –are in constant, random, straight-line.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Gases. Ê A Gas is composed of particles ä usually molecules or atoms ä Considered to be hard spheres far enough apart that we can ignore their volume.
Properties of Gases Gases expand to fill any container. –random motion, no attraction Gases are fluids (like liquids). –particles flow easily Gases have.
Gas Laws Kinetic Theory True for ideal gases. 1. Gas molecules don’t attract or repel each other 2. Particles are smaller than the space between them.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have.
The Property of Gases – Kinetic Molecular Theory explains why gases behave as they do
Ideal Gas Law Gases. C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids).
I. Physical Properties (p. 399 – 402, ) Ch Gases Gases notes #1 - gas properties.ppt.
The Gas Laws 1. A gas is composed of particles molecules or atoms – hard spheres far enough apart- ignore volume Empty space The Kinetic Theory of Gases.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have mass but no definite volume. have elastic collisions.
A. Kinetic Molecular Theory
Gases.
I. Physical Properties (p )
Ch.12- Gases I. Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p )
Gases I. Physical Properties.
I. Physical Properties (p )
Gas laws.
Ch Liquids & Solids III. Changes of State C. Johannesson.
Gases Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p. 303 – 312 in school)
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Kinetic-Molecular Theory
Ch Gases I. Physical Properties.
Chapter 1 Lesson 3 Mrs. Brock RJMS
Unit 8 - Gases Chapter 13.1 and Chapter 14.
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Gases Physical Properties.
Unit 8 - Gases Chapter 13.1 and Chapter 14.
Chapter 7-1, 7-2.
Gases and Laws – Unit 2 Version
Presentation transcript:

Physical Properties Ch. 10 & 11 - Gases

A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight- line motion. don’t attract or repel each other. have an avg. KE directly related to Kelvin temperature.

Ideal Gases don ’ t exist b Molecules do take up space All matter has volume b There are attractive forces otherwise there would be no liquids

Ideal Gases b There are no gases for which this is true. b Real gases behave this way at high temperature and low pressure.

Ideal Gases b In this chapter we are going to assume the gases behave ideally b Does not really exist makes the math easier close approximation. b Assume particles have no volume b Assume no attractive forces between molecules

B. Real Gases b Particles in a REAL gas… have their own volume attract each other b Gas behavior is most ideal… at low pressures at high temperatures in nonpolar atoms/molecules

Real Gases behave like Ideal Gases b When the molecules are far apart b They take a smaller percentage of the space b Ignoring their volume is reasonable b This is at low pressure

Real Gases behave like Ideal gases when b Molecules are moving fast. b Molecules are not next to each other very long b Attractive forces can’t play a role. b At high temp. b Far above boiling point.

C. Johannesson C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction b Gases have very low densities. no volume = lots of empty space

C. Characteristics of Gases b Gases can be compressed. no volume = lots of empty space b Gases undergo diffusion & effusion. random motion

DiffusionDiffusion u Molecules moving from areas of high concentration to low concentration. u Perfume molecules spreading across the room. u Effusion - Gas escaping through a tiny hole in a container. u From high to low concentration u Both depend on the speed of the molecules

C. Johannesson D. Temperature ºF ºC K K = ºC b Always use absolute temperature (Kelvin) when working with gases.

E. Pressure Which shoes create the most pressure?

E. Pressure b Barometer measures atmospheric pressure Mercury Barometer Aneroid Barometer

E. Pressure b Manometer measures contained gas pressure U-tube ManometerBourdon-tube gauge

E. Pressure b KEY UNITS AT SEA LEVEL kPa (kilopascal) 1 atm 760 mm Hg 760 torr 14.7 psi

F. STP Standard Temperature & Pressure 0°C 273 K 1 atm kPa -OR- STP