1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.

Slides:



Advertisements
Similar presentations
Chapter 7 Structuring System Process Requirements
Advertisements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Lecture 8- Analysis Modeling The Elements of Anaylsis Model The Elements of Anaylsis Model Data Modeling, Functional Modeling and Information Flow Data.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Analysis Modeling.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 Lecture 4 Behaviour Modelling Requirement Specification Object-Oriented Paradigm.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Cardinality and Modality (ERD)
1 Lecture 3 Requirement Analysis System Analysis Concepts Modeling Techniques.
Analysis Modeling Two primary methods today
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Chapter 8 Analysis Modeling Adapted by Dan Fleck from: - Roger Pressman’s Slides Jochen.
CS451 - Lecture 6 1 CS451 Topic 6: DFD Tutorial Yugi Lee STB #555 (816)
Lesson 3 ANALYSIS MODELLING.
Building The Analysis Model. Object-Oriented Analysis The object oriented analysis define all classes, the relationships and behavior associated with.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 Chapter 8 Analysis Modeling Adapted by Dan Fleck from: - Roger Pressman’s Slides - - Jochen.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Analysis Modeling (cont’d) CpSc 372: Introduction to Software Engineering Jason O. Hallstrom Authorship Disclaimer. These slides.
Chapter 8 Analysis Modeling Adapted by Dan Fleck from: - Roger Pressman’s Slides Jochen.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Chapter 6-7 Analysis Modeling Adapted by Dan Fleck from: - Roger Pressman’s Slides Jochen.
These slides are designed to accompany Web Engineering: A Practitioner’s Approach (The McGraw-Hill Companies, Inc.) by Roger Pressman and David Lowe, copyright.
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.1.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Coming up: Software Engineering: A Practitioner’s Approach, 6/e Chapter 5 Practice: A Generic View copyright © 1996, 2001, 2005 R.S. Pressman & Associates,
1 Chapter 7 Requirement Modeling flow, behavior, patterns and Webapps.
1 Chapter 8 Analysis Modeling Adapted by Dan Fleck from: - Roger Pressman’s Slides - - Jochen.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 8: Analysis Modeling Software Engineering: A Practitioner’s Approach, 6/e Chapter.
Analysis Modeling. Function Modeling & Information Flow  Information is transformed as it flows through a computer-based system. The system accepts input.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Developed by Reneta Barneva, SUNY Fredonia for CSIT 425 Requirements Modeling.
1 Software Engineering: A Practitioner’s Approach, 6/e Chapter 8: Analysis Modeling Software Engineering: A Practitioner’s Approach, 6/e Chapter.
Chapter 8 Analysis & Modeling. Data Modeling examines data objects independently of processing focuses attention on the data domain creates a model at.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 Chapter 6-7 Analysis Modeling Adapted by Dan Fleck from: - Roger Pressman’s Slides - - Jochen.
Chapter 12 Analysis Modeling
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Chapter 10 요구사항 모델링 : 클래스 기반 방법론 Requirements Modeling: Class-Based Methods 임현승 강원대학교 Revised from the slides by Roger S. Pressman and Bruce R. Maxim for.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Chapter 12 Analysis Modeling. Analysis Modeling ä Two primary methods today ä Structured Analysis ä Object-oriented analysis ä Some important considerations.
1 Functional Modeling Lecture # Recap We had talked about object-oriented static modeling in quite detail We had developed a OO static model of.
Course Instructor: Kashif I hsan 1. Chapter # 6 2.
Elements Of Modeling. 1.Data Modeling  Data modeling answers a set of specific questions that are relevant to any data processing application. e.g. ◦
1 8.1 Requirements Analysis Rules of Thumb Rules of Thumb Models should focus on requirements that are visible within the problem or business domain. The.
Software Engineering: A Practitioner’s Approach, 6/e Chapter 8 Analysis Modeling copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University.
Requirements Modeling: Flow, Behavior, Patterns, and WebApps
Chapter 8 Analysis & Modeling
Chapter 8 Building the Analysis Model (2) Analysis Modeling
Data Dictionaries ER Diagram.
Software Engineering: A Practitioner’s Approach, 6/e Chapter 8 Analysis Modeling copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University.
Chapter 10 Requirements Modeling: Class-Based Methods
For University Use Only
Requirement Analysis using
Software Engineering: A Practitioner’s Approach, 6/e Chapter 8 Analysis Modeling copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University.
Presentation transcript:

1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Supplementary Slides for Software Engineering: A Practitioner's Approach, 5/e Supplementary Slides for Software Engineering: A Practitioner's Approach, 5/e copyright © 1996, 2001 R.S. Pressman & Associates, Inc. For University Use Only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach. Any other reproduction or use is expressly prohibited. This presentation, slides, or hardcopy may NOT be used for short courses, industry seminars, or consulting purposes.

2 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Chapter 12 Analysis Modeling

3 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Analysis Modeling  Uses a combination of text and diagrammatic forms to depict requirements for data, function, and behavior that is easy to understand and to review  Commonly used method: 1.Structured Analysis 2.Object Oriented Analysis ++

4 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Elements of Analysis Model  Primary objectives of analysis model: 1.Describe what customer requires 2.Establish a basis for the creation of a software design 3.Define set of requirements that can be validated  Structure: DD DFD ERD State Transition Diagram ++

5 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Structure Cont’d…  Data Dictionary  A repository that contains description of all data objects consumed or produced by the system  Entity Relationship Diagram  Depicts relationship between data objects  Data Flow Diagram  Provide an indication of how data are transformed as they move through the system  Depict the functions (& sub-functions) that transform the data flow  State Transition Diagram  Indicates how system behaves as consequences of external events ++

6 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Analysis Modeling: Where to Begin?  A statement of scope can be acquired from:  the FAST working document  A set of use-cases  the statement of scope must be “parsed” to extract data, function and behavioral domain information

7 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Statement of Scope  a relatively brief description of the system to be built  indicates data that are input and output and basic functionality  indicates conditional processing (at a high level)  implies certain constraints and limitations

8 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Identifying Objects and Operations  define “objects” by underlining all nouns in the written statement of scope  producers/consumers of data  places where data are stored  “composite” data items  define “operations” by double underlining all active verbs  processes relevant to the application  data transformations  consider other “services” that will be required by the objects

9 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data Modeling and Entity Relationship (E-R) Diagramming

10 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Why Data Modeling?  examines data objects independently of processing  focuses attention on the data domain  creates a model at the customer’s level of abstraction  indicates how data objects relate to one another

11 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 What is a Data Object? Object —something that is described by a set of attributes (data items) and that will be manipulated within the software (system) eachinstance of an object (e.g., a book) of an object (e.g., a book) can be identified uniquely (e.g., ISBN #) each plays a necessary role in the system i.e., the system could not function without access to instances of the object each is described by attributes that are themselves data items

12 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Typical Objects external entities (printer, user, sensor) things (e.g, reports, displays, signals) (e.g, reports, displays, signals) occurrences or events (e.g., interrupt, alarm) roles (e.g., manager, engineer, salesperson) organizational units (e.g., division, team) (e.g., division, team) places (e.g., manufacturing floor) (e.g., manufacturing floor) structures (e.g., employee record)

13 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data Objects and Attributes A data object contains a set of attributes that act as an aspect, quality, character- istic, or descriptor of the object object: automobile attributes: make make model model body type body type price price options code options code

14 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 What is a Relationship? relationship —indicates “connectedness”; a "fact" that must be "remembered" by the system and cannot or is not computed or derived mechanically  several instances of a relationship can exist  objects can be related in many different ways

15 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 ERD Notation (0, m) (1, 1) object object relationship 1 2 One common form: (0, m) (1, 1) object 1 object 2 relationship Another common form: attribute

16 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Building an ERD  Level 1—model all data objects (entities) and their “connections” to one another  Level 2—model all entities and relationships  Level 3—model all entities, relationships, and the attributes that provide further depth

17 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 The ERD: An Example (1,1) (1,m) places Customer request for service generates (1,n) (1,1) workorder worktasks materials consistsof lists (1,1) (1,w) (1,1) (1,i) selectedfrom standard task table (1,w) (1,1)

18 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Creating a Flow Model

19 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 The Flow Model Every computer-based system is an information transform.... computerbasedsystem input output

20 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Flow Modeling Notation external entity process data flow data store

21 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 External Entity A producer or consumer of data Examples: a person, a device, a sensor Another example: computer-based system Data must always originate somewhere and must always be sent to something

22 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Process A data transformer (changes input to output) Examples: compute taxes, determine area, format report, display graph Data must always be processed in some way to achieve system function

23 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data Flow Data flows through a system, beginning as input and be transformed into output. computetrianglearea base height area

24 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data Stores Data is often stored for later use. look-upsensordata sensor # report required sensor #, type, location, age sensor data sensor number type, location, age

25 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data Flow Diagramming: Guidelines  all icons must be labeled with meaningful names  the DFD evolves through a number of levels of detail  always begin with a context level diagram (also called level 0)  always show external entities at level 0  always label data flow arrows  do not represent procedural logic

26 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Constructing a DFD—I  review ERD to isolate data objects and grammatical parse to determine “operations)  determine external entities (producers and consumers of data  create a level 0 DFD

27 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Level 0 DFD Example user processingrequest videosource NTSC video signal digitalvideoprocessor requestedvideosignal monitor

28 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Constructing a DFD—II  write a narrative describing the transform  parse to determine next level transforms  “balance” the flow to maintain data flow continuity  develop a level 1 DFD  use a 1:5 (approx.) expansion ratio

29 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 The Data Flow Hierarchy P a b xy p1 p2 p3 p4 5 a b c d e f g level 0 level 1

30 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Flow Modeling Notes  each bubble is refined until it does just one thing  the expansion ratio decreases as the number of levels increase  most systems require between 3 and 7 levels for an adequate flow model  a single data flow item (arrow) may be expanded as levels increase (data dictionary provides information)

31 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Maps into DFDs: A Look Ahead analysis model design model