Univariate Analysis Hermine Maes TC21 March 2008.

Slides:



Advertisements
Similar presentations
Multivariate Twin Analysis
Advertisements

1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
Bivariate analysis HGEN619 class 2007.
Elizabeth Prom-Wormley & Hermine Maes
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
(Re)introduction to Mx Sarah Medland. KiwiChinese Gooseberry.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Summarizing Data Nick Martin, Hermine Maes TC21 March 2008.
Heterogeneity Hermine Maes TC19 March Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx.
(Re)introduction to Mx. Starting at the beginning Data preparation Mx expects 1 line per case/family Almost limitless number of families and variables.
Introduction to Linkage
Univariate Analysis in Mx Boulder, Group Structure Title Type: Data/ Calculation/ Constraint Reading Data Matrices Declaration Assigning Specifications/
Continuous heterogeneity Shaun Purcell Boulder Twin Workshop March 2004.
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
Genetic Dominance in Extended Pedigrees: Boulder, March 2008 Irene Rebollo Biological Psychology Department, Vrije Universiteit Netherlands Twin Register.
Univariate Analysis Hermine Maes TC19 March 2006.
Path Analysis Frühling Rijsdijk SGDP Centre Institute of Psychiatry King’s College London, UK.
Mx Practical TC18, 2005 Dorret Boomsma, Nick Martin, Hermine H. Maes.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Raw data analysis S. Purcell & M. C. Neale Twin Workshop, IBG Colorado, March 2002.
Multivariate Threshold Models Specification in Mx.
Social interaction March 7 th, 2002 Boulder, Colorado John Hewitt.
Intro to Mx Scripts. Groups Data Calculation Constraint.
Power and Sample Size Adapted from: Boulder 2004 Benjamin Neale Shaun Purcell I HAVE THE POWER!!!
Karri Silventoinen University of Helsinki Osaka University.
Karri Silventoinen University of Helsinki Osaka University.
Karri Silventoinen University of Helsinki Osaka University.
Institute of Psychiatry King’s College London, UK
Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.
Cholesky decomposition May 27th 2015 Helsinki, Finland E. Vuoksimaa.
Heterogeneity Hermine Maes TC21 March Files to Copy to your Computer Faculty/hmaes/tc19/maes/heterogeneity  ozbmi.rec  ozbmi.dat  ozbmiysat(4)(5).mx.
Univariate modeling Sarah Medland. Starting at the beginning… Data preparation – The algebra style used in Mx expects 1 line per case/family – (Almost)
Practical SCRIPT: F:\meike\2010\Multi_prac\MultivariateTwinAnalysis_MatrixRaw.r DATA: DHBQ_bs.dat.
Power and Sample Size Boulder 2004 Benjamin Neale Shaun Purcell.
Combined Linkage and Association in Mx Hermine Maes Kate Morley Dorret Boomsma Nick Martin Meike Bartels Boulder 2009.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Means, Thresholds and Moderation Sarah Medland – Boulder 2008 Corrected Version Thanks to Hongyan Du for pointing out the error on the regression examples.
Mx Practical TC20, 2007 Hermine H. Maes Nick Martin, Dorret Boomsma.
Continuous heterogeneity Danielle Dick & Sarah Medland Boulder Twin Workshop March 2006.
Frühling Rijsdijk & Kate Morley
Categorical Data Frühling Rijsdijk 1 & Caroline van Baal 2 1 IoP, London 2 Vrije Universiteit, A’dam Twin Workshop, Boulder Tuesday March 2, 2004.
Welcome  Log on using the username and password you received at registration  Copy the folder: F:/sarah/mon-morning To your H drive.
Linkage in Mx & Merlin Meike Bartels Kate Morley Hermine Maes Based on Posthuma et al., Boulder & Egmond.
Simple and multiple regression analysis in matrix form Least square Beta estimation Beta Simple linear regression Multiple regression with two predictors.
QTL Mapping Using Mx Michael C Neale Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Categorical Data HGEN
Intro to Mx HGEN619 class 2005.
Multivariate Analysis
Bivariate analysis HGEN619 class 2006.
Univariate Twin Analysis
Introduction to Multivariate Genetic Analysis
Linkage and Association in Mx
Fitting Univariate Models to Continuous and Categorical Data
Re-introduction to openMx
Heterogeneity HGEN619 class 2007.
Longitudinal Analysis
Univariate Analysis HGEN619 class 2006.
Path Analysis Danielle Dick Boulder 2008
Univariate modeling Sarah Medland.
Heterogeneity Danielle Dick, Hermine Maes,
(Re)introduction to Mx Sarah Medland
Sarah Medland faculty/sarah/2018/Tuesday
BOULDER WORKSHOP STATISTICS REVIEWED: LIKELIHOOD MODELS
Multivariate Genetic Analysis
Multivariate Genetic Analysis: Introduction
Presentation transcript:

Univariate Analysis Hermine Maes TC21 March 2008

Files to Copy to your Computer Faculty/Maes/a21/maes/univariate  ozbmi.rec  ozbmi.dat  ozbmiyface(s)(2).mx  Univariate.ppt

Univariate Genetic Analysis Univariate Saturated Models  Free variances, covariances  Free means Univariate Genetic Models  Variances partitioned in a, c/d and e  Free means (or not)

Saturated Model

Saturated Model MZ & DZ MZ twinsDZ twins 10 parameters: 4 means, 4 variances, 2 covariances

Equality of means, variances MZ twinsDZ twins 4 parameters: 1 mean, 1 variance, 2 covariances

ACE Model

ACE Model + Means

ACE Model MZ twinsDZ twins 7 parameters: 4 means, 3 path coefficients: a, c, e

ADE Model MZ twinsDZ twins 7 parameters: 4 means, 3 path coefficients: a, d, e

Tests ACE model Is a significant ? -> CE model Is c significant ? -> AE model Is there significant family resemblance ? -> E model ADE model Is d significant ? -> AE model

! Estimate variance components - ACED model ! OZ BMI data - younger females #NGroups 4 #define nvar 1 #define nvar2 2 Title 1: Model Parameters Calculation Begin Matrices; X Lower nvar nvar Free ! a Y Lower nvar nvar ! c Z Lower nvar nvar Free ! e W Lower nvar nvar Free ! d H Full 1 1 ! 0.5 Q Full 1 1 ! 0.25 End Matrices; Matrix H.5 Matrix Q.25 Label Row X add_gen Label Row Y com_env Label Row Z spec_env Label Row W dom_gen Begin Algebra; A= X*X'; ! a^2 C= Y*Y'; ! c^2 E= Z*Z'; ! e^2 D= W*W'; ! d^2 End Algebra; End ozbmiyface.mx

! Estimate variance components - ACED model ! OZ BMI data - younger females #NGroups 4 #define nvar 1 #define nvar2 2 Title 1: Model Parameters Calculation Begin Matrices; X Lower nvar nvar Free ! a Y Lower nvar nvar ! c Z Lower nvar nvar Free ! e W Lower nvar nvar Free ! d H Full 1 1 ! 0.5 Q Full 1 1 ! 0.25 End Matrices; Matrix H.5 Matrix Q.25 ozbmiyface.mx Group Type Values for Fixed Parameters

! Estimate variance components - ACED model ! OZ BMI data - younger females Label Row X add_gen Label Row Y com_env Label Row Z spec_env Label Row W dom_gen Begin Algebra; A= X*X'; ! a^2 C= Y*Y'; ! c^2 E= Z*Z'; ! e^2 D= W*W'; ! d^2 End Algebra; End ozbmiyface.mx Labels for Matrix Rows and Columns Algebra Section Additive genetic variance Shared environmental variance Specific environmental variance Dominance genetic variance

! Estimate variance components - ACED model ! OZ BMI data - younger females II Title 2: MZ data #include ozbmi.dat Select if zyg =1 Select if agecat =1 Select bmi1 bmi2 ; Begin Matrices = Group 1; M Full 1 nvar2 Free End Matrices; Means M; Covariance A+C+E+D | A+C+D _ A+C+D | A+C+E+D ; Option RSiduals; End Title 3: DZ data #include ozbmi.dat Select if zyg =3 Select if agecat =1 Select bmi1 bmi2 ; Begin Matrices = Group 1; M Full 1 nvar2 Free End Matrices; Means M; Covariance A+C+E+D | _ | A+C+E+D ; Option RSiduals End ozbmiyface.mx

! Estimate variance components - ACED model ! OZ BMI data - younger females II Title 2: MZ data #include ozbmi.dat Select if zyg =1 Select if agecat =1 Select bmi1 bmi2 ; Begin Matrices = Group 1; M Full 1 nvar2 Free End Matrices; Means M; Covariance A+C+E+D | A+C+D _ A+C+D | A+C+E+D ; Option RSiduals; End Title 3: DZ data #include ozbmi.dat Select if zyg =3 Select if agecat =1 Select bmi1 bmi2 ; Begin Matrices = Group 1; M Full 1 nvar2 Free End Matrices; Means M; Covariance A+C+E+D | _ | A+C+E+D ; Option RSiduals End Model Statements Kronecker product Copy Matrices from Group 1

! Estimate variance components - ACED model ! OZ BMI data - younger females III Title 4: Standardization Calculation Begin Matrices = Group 1; End Matrices; Start.6 all Start 20 M M 2 1 nvar2 Start 20 M M 3 1 nvar2 Begin Algebra; V=A+C+E+D; ! total variance P=A|C|E|D; ! concatenate parameter estimates ! standardized parameter estimates End Algebra; !ADE model Interval S S 1 4 Option NDecimals=4 Option Sat= ,1767 End ozbmiyface.mx

! Estimate variance components - ACED model ! OZ BMI data - younger females III Title 4: Standardization Calculation Begin Matrices = Group 1; End Matrices; Start.6 all Start 20 M M 2 1 nvar2 Start 20 M M 3 1 nvar2 Begin Algebra; V=A+C+E+D; P=A|C|E|D; End Algebra; !ADE model Interval S S 1 4 Option NDecimals=4 Option Sat= ,1767 End Start Values for all free Parameters Overwrite Start Values for Means Calculate Total Variance by adding 4 Variance Components Sticking 4 Variance Components together in 1 Matrix Multiplying each of 4 Variance Components by the Inverse of the Variance, Equivalent to Dividing Variance Components by the Variance to get Standardized Variance Components Calculate 95% Confidence Intervals Compare with Likelihood (-2LL, df) of Saturated model (ozbmiyfsat.mxo), to obtain Chi-square Goodness-of-Fit Statistics

! Estimate variance components - ACED model ! OZ BMI data - younger females IV Title 4: Standardization Calculation Begin Matrices = Group 1; End Matrices; Start.6 all Start 20 M M Start 20 M M Begin Algebra; V=A+C+E+D; P=A|C|E|D; End Algebra; !ADE model Interval S S 1 4 Option NDecimals=4 Option Sat= ,1767 Option Multiple End !AE model Drop W End !ACE model Free Y End !CE model Drop X End !E model Drop Y End ozbmifyaces.mx

! Estimate variance components - ACED model ! OZ BMI data - younger females IV Title 4: Standardization Calculation Begin Matrices = Group 1; End Matrices; Start.6 all Start 20 M M Start 20 M M Begin Algebra; V=A+C+E+D; P=A|C|E|D; End Algebra; !ADE model Interval S S 1 4 Option NDecimals=4 Option Sat= ,1767 Option Multiple End !AE model Drop W End !ACE model Free Y End !CE model Drop X End !E model Drop Y End Indicates to Mx that you want to fit submodels which will follow, Has to be before the End statement of the Last Group of your Main Script Submodel, just requires Changes compared to Full Script Free previously fixed Parameter Drop fixes Parameter to 0

Submodels: ozbmifyaces.mx Matrix / Model X (a)Y (c)Z (e)W (d)Cov NP Mean NP NPDF Sat6410 ADEFree 3473 AEFree Drop2464 ACEFree 3473 CEDropFree 2464 EDropFree1455

! Estimate variance components - ACED model ! OZ BMI data - younger females IV..... !ADE model Interval S S 1 4 Option NDecimals=4 Option Sat= ,1767 Option Multiple End !Save ozbmiyf.mxs Option Issat End !AE model Drop W End !ACE model Free Y Option Sat= ,1767 End Option Issat End !CE model Drop X End !E model Drop Y End ozbmiyfaces2.mx Compare with Saturated Model (free means, variances, covariances) Make current Model the Saturated Model (ADE) to compare submodels with Expect submodels Make current Model the Saturated Model (ACE) to compare submodels with

Submodels: ozbmifyaces2.mx Matrix /Model X (a)Y (c)Z (e)W (d) Cov NP Mean NP NPNP Sat Model Sat NP DF Sat6410 ADEFree 347Sat103 AEFree Drop246ADE71 ACEFree 347Sat103 CEDropFree 246ACE71 EDropFree145ACE72 NP: number of parameters, Sat: saturated, DF: degrees of freedom

Goodness-of-Fit for BMI yf -2LLdfchi 2 dfpAICdiff chi 2 dfp Sat ADE AE ACE CE E

Parameter Estimates for BMI yf Path coefficientsVariance compStand var comp aceda2a2 c2c2 e2e2 d2d2 a2a2 c2c2 e2e2 d2d2 Sat ADE AE ACE CE E

Assignment Fit genetic model and submodels  Summarize goodness-of-fit results See table below  Record parameter estimates See table below

Goodness-of-Fit for BMI yf -2LLdfchi 2 dfpAICdiff chi 2 dfp Sat ADE AE ACE CE E

Parameter Estimates for BMI yf Path coefficientsVariance compStand var comp aceda2a2 c2c2 e2e2 d2d2 a2a2 c2c2 e2e2 d2d2 Sat ADE AE ACE CE E