L6 - Stellar Evolution I: November-December, 20061 L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et.

Slides:



Advertisements
Similar presentations
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Advertisements

Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Cumber01.ppt Thomas Henning Max-Planck-Institut für Astronomie, Heidelberg Protoplanetary Accretion Disks From 10 arcsec to arcsec HST.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 1 T Tauri and Debris Disks Rene´ Liseau Stockholm Observatory, Sweden
Accretion Processes in Star Formation Lee Hartmann Cambridge Astrophysics Series, 32 Cambridge University Press (also from Nuria Calvet talks (2004) (continued)
Protoplanetary Disks: The Initial Conditions of Planet Formation Eric Mamajek University of Rochester, Dept. of Physics & Astronomy Astrobio 2010 – Santiago.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Resolved Inner Disks around Herbig Ae/Be Stars: Near-IR Interferometry with PTI Josh Eisner Collaborators: Ben Lane, Lynne Hillenbrand, Rachel Akeson,
The Birth of Stars Chapter Twenty. Guiding Questions 1.Why do astronomers think that stars evolve? 2.What kind of matter exists in the spaces between.
John Bally Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder Star Formation.
The Birth of Stars: Nebulae
Processes in Protoplanetary Disks Phil Armitage Colorado.
The Group of Bootis Stars Dr. Ernst Paunzen Institute for Astronomy University of Vienna.
L 4 - Stellar Evolution II: August-September, L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &
The Birth of Solar Systems A solar system The disk condenses and dissipates Collapse of and interstellar cloud Formation of a protostar and disk.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 1 T Tauri and Debris Disks Rene´ Liseau Pawel Artymowicz Alexis Brandeker Malcolm Fridlund.
Chemistry and line emission of outer protoplanetary disks Inga Kamp Introduction to protoplanetary disks and their modeling Introduction to protoplanetary.
L6 - Stellar Evolution II: August-September, L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett.
The formation of stars and planets Day 3, Topic 2: Viscous accretion disks Continued... Lecture by: C.P. Dullemond.
Star formation across the mass spectrum Our understanding of low-mass (solar type with masses between 0.1 and 10 M SUN ) star formation has improved greatly.
1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean.
Centimeter and Millimeter Observations of Very Young Binary and Multiple Systems -Orbital Motions and Mass Determination -Truncated Protoplanetary Disks.
Star Formation Astronomy 315 Professor Lee Carkner Lecture 12.
Background Last review on disk chemistry in Protostars and Planets: Prinn (1993) Kinetic Inhibition model - (thermo-)chemical timescale vs (radial) mixing.
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Processes in Protoplanetary Disks
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
The Formation and Structure of Stars Chapter 11. The last chapter introduced you to the gas and dust between the stars that are raw material for new stars.
Unit 5: Sun and Star formation part 2. The Life Cycle of Stars Dense, dark clouds, possibly forming stars in the future Young stars, still in their birth.
Accretion Disks By: Jennifer Delgado Version:1.0 StartHTML: EndHTML: StartFragment: EndFragment: StartSelection:
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
Leonardo Testi: Intermediate-Mass Star Formation, IAU Symp 221, Sydney, July 23, 2003 Formation and Early Evolution of Intermediate-Mass Stars  Intermediate-Mass.
AS 4002 Star Formation & Plasma Astrophysics The ‘proplyds’ of Orion Many protostars are surrounded by opaque, dusty discs at ages of a few Myr. Our solar.
1 S. Davis, April 2004 A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance.
Slide 1 (of 18) Circumstellar Disk Studies with the EVLA Carl Melis UCLA/LLNL In collaboration with: Gaspard Duchêne, Holly Maness, Patrick Palmer, and.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
Studying Young Stellar Objects with the EVLA
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.
Primordial Disks: From Protostar to Protoplanet Jon E. Bjorkman Ritter Observatory.
L 3 - Stellar Evolution I: November-December, L 3: Collapse phase – theoretical models Background image: courtesy ESO - B68 with.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
In previous episodes …... Stars are formed in the spiral arms of the Galaxy, in the densest and coldest regions of the interstellar medium, which are.
AS 4002 Star Formation & Plasma Astrophysics Steady thin discs Suppose changes in external conditions are slower than t visc ~R 2 /. Set ∂/∂t=0 and integrate.
Evolved Protoplanetary Disks: The Multiwavelength Picture Aurora Sicilia-Aguilar Th. Henning, J. Bouwman, A. Juhász, V. Roccatagliata, C. Dullemond, L.
Photoevaporation of Disks around Young Stars D. Hollenbach NASA Ames Research Center From Stars to Planets University of Florida April, 2007 Collaborators:
Formation of stellar systems: The evolution of SED (low mass star formation) Class 0 –The core is cold, 20-30K Class I –An infrared excess appears Class.
Sternentstehung - Star Formation Sommersemester 2006 Henrik Beuther & Thomas Henning 24.4 Today: Introduction & Overview 1.5 Public Holiday: Tag der Arbeit.
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
Circumstellar Disks at 5-20 Myr: Observations of the Sco-Cen OB Association Marty Bitner.
Planet and Gaps in the disk
Young planetary systems
Pre-Main-Sequence of A stars
Molecules: Probes of the Interstellar Medium
Some considerations on disk models
Ge/Ay133 SED studies of disk “lifetimes” &
-Orbital Motions and Mass Determination
The chemistry and stability of the protoplanetary disk surface
Presentation transcript:

L6 - Stellar Evolution I: November-December, L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490

L6 - Stellar Evolution I: November-December, L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490 The Formation of Stars Chapters: 11, 13

L6 - Stellar Evolution I: November-December, L 6: Circumstellar Disks Recent reviews include: Protostars & Planets IV, Mannings, Boss & Russell (eds.) 12 Articles on Disks 5 Articles on Outflows Zuckerman, ARAA 2001, 39: 549 Zuckerman & Song, ARAA 2004, 42: 685 Protostars & Planets V (2005)

L6 - Stellar Evolution I: November-December, L 6: Circumstellar Disks and Outflows

L6 - Stellar Evolution I: November-December, Flattened structures - Disks Inevitable consequence of star formation Rotation Magnetic Fields Rotation

L6 - Stellar Evolution I: November-December, Flattened structures - Disks Inevitable consequence of star formation Rotation P.S. Laplace 1796, 1799 Exposition du systeme du monde Mechanique celeste I. Kant 1755 Allgemeine Naturgeschichte und Theorie des Himmels Planetary System Formation Astrobiology School: Q

L6 - Stellar Evolution I: November-December, Mass Loss - Outflows Inevitable consequence of star formation Angular Momentum Loss - Redistribution The race between mass accretion & mass loss processses

L6 - Stellar Evolution I: November-December, Lynden-Bell & Pringle 1974, MNRAS 168, 603: Keplerian Disk Differential Rotation + Viscosity Mass Transport Inwards Angular Momentum Transport Outwards

L6 - Stellar Evolution I: November-December, `standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysics self-consistent structure of steady, optically thick  -disk blackbody radiation and thin disk approximation When / Where valid ?

L6 - Stellar Evolution I: November-December, Example: Lin & Papaloizou opacities (1985 PP II): Icy grains H - Molecules bound-free free-free (Cox-Stuart-Alexander)

L6 - Stellar Evolution I: November-December, Beckwith et al. 2000, PP IV Grain Opacities See Ph. Thebault’s lecture

L6 - Stellar Evolution I: November-December, `standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysics self-consistent structure of steady, optically thick a-disk

L6 - Stellar Evolution I: November-December, observed SEDs of T Tauri Stars & `mean model´ of star+disk D´Alessio et al HABE Disk Structure: Dullemond & Dominik 2004 includes vertical Temperature distribution

L6 - Stellar Evolution I: November-December, Gas Disks – Structure Models Steady Disks around Single Stars Boundary Conditions R in : boundary layer, magnetosphere, hole? R out : ad hoc?, interstellar turbulence? Viscosity MHD/rotation (Hawley & Balbus 1995) Opacity , T, …, XYZ,...,  , ...,  ...) ModelsAdams & Shu 1986 (flat) [examples] Kenyon & Hartmann 1987 (flared) Malbet & Bertout 1991 (vertical structure) D´Allessio et al. 1998, Aikawa & Herbst 1998 (chemistry) Nomura 2002 (2D) Wolf 2003 (3D) See G. Mellema’s lecture

L6 - Stellar Evolution I: November-December, Observations of Keplerian Disks JE Keeler 1895 ApJ 1: 416 The Rings of Saturn spectrum image Courtesy Brandeker, Liseau & Ilyn 2002

L6 - Stellar Evolution I: November-December, Categories of Disks observed T Tauri Disks: around young stars ( Myr) of half a solar mass ( M sun ) at 150 pc distance ( pc) in and/or near molecular clouds Accretion Disks Debris Disks: around young ms-stars ( Myr) of about a solar mass (1 - 2 M sun ) at 20 pc distance ( pc) in the general field Vega-excess stellar disks gas rich gas poor

L6 - Stellar Evolution I: November-December, Frequency of Disks High Rate of occurence around young stars NGC % Trapezium cluster 80% IC % Haisch et al and around BDs in Trapezium cluster 65% Muench et al see also G. Gahm’s lecture

L6 - Stellar Evolution I: November-December, Gas Disks - Sizes Size scale (AU)Tracer (mode)*Reference 20000CS (1- 0) (S)Kaifu et al CO (1- 0) (S)Fridlund et al C 18 O (1- 0) (I)Sargent et al < mm (I)Woody et al mm, cm (I)Keene & Masson mm (I)Lay et al H 13 CO + (1- 0) (S)Mizuno et al mm (S)Ladd et al C 18, 17 O (2- 1) (S)Fuller et al CO (1- 0) (I)Ohashi et al H 13 CO + (1- 0) (I)Saito et al H 12, 13 CO + (1- 0) (S, I)Hogerheijde et al.1997, C 18 O + (1- 0) (I)Momose et al mm (I)Rodriguez et al CH 3 OH (2-1), (5-4) (S)White et al Fridlund et al for One Object: L1551 Size depends on frequency/mode of observation * S=single dish, I=Interferometer

L6 - Stellar Evolution I: November-December, Gas Disks - Sizes T Tauri/HABE disks AUDust: mm-continuum interferometry AUDust: scattered stellar light 300 AUGas: CO lines (evidence for Kepler rotation) Silhouettte disks (``proplyds´´) up to 1000 AUDust: scattered stellar light generally

L6 - Stellar Evolution I: November-December, Gas Disks - Masses H 2 Gas Directly CO and Dust blueshifted CO redshifted CO continuum

L6 - Stellar Evolution I: November-December, Gas Disks - Masses Lower limit: to 1 M Sun (based on mm / submm continuum) How good are these numbers ? Do we understand disks ? ? Why ? dust gas +dust Solar Minimum Mass Nebula = M Sun

L6 - Stellar Evolution I: November-December, Gas Disks - Make up gas disks consist of gas and dust what components? what proportions?

L6 - Stellar Evolution I: November-December, T Tauri Disks - Make up van Zadelhoff CO (1)* HCO + (5) HCN (5) CO (200) HCO + (200) HCN (200 ) LkCa 15TW Hya * (N) = depletion factor

L6 - Stellar Evolution I: November-December, T Tauri Disks - Chemistry Molecular abundances (rel. H 2 ) Species LkCa 15TW Hya CO3.4 ( - 7)5.7 ( - 8) HCO (-12)2.2 (-11) H 13 CO + < 2.6(-12)3.6 (-13) DCO + ….7.8 (-13) CN2.4 (-10)1.2 (-10) HCN3.1 (-11)1.6 (-11) H 13 CN….< 8.4(-13) HNC….< 2.6(-12) DCN….< 7.1(-14) CS8.5 (-11)…. H 2 CO4.1 (-11)< 7.1(-13) CH 3 OH< 3.7(-10)< 1.9(-11) N 2 H + < 2.3(-11)< 1.8(-11) H 2 D + < 1.5(-11)< 7.8(-12) Thi 2002

L6 - Stellar Evolution I: November-December, Gas Disks - Evolution Time scales (viscous accretion disk) t dyn ~  t therm ~  (H/R) 2 t visc t dyn ~ 1/  Kepler  ~ H/R << 1 if T ~ R -1/2, t visc ~ R t visc ~ 10 5 yr (  /0.01) -1 (R/10 AU)

L6 - Stellar Evolution I: November-December, Gas Disks - Evolution Disk dispersal and disk lifetimes Physical Mechanisms Hollenbach et al PPIV SE = Stellar Encounter (tidal stripping) WS = Stellar wind stripping evap E = photoevaporation external star evap c = photoevaporation central star All for Trapezium conditions T ~ R -0.5, t visc ~ R t visc ~ 10 5 yr (  /0.01) -1 (R/10 AU)

L6 - Stellar Evolution I: November-December, Gas (T Tauri) Disks - Evolution Disk dispersal and disk lifetimes Mass accretion evolution Calvet et al PPIV Average Error Bar

L6 - Stellar Evolution I: November-December, Gas Disks to Debris Disks – Evolution ? See also lecture by Ph. Thebault f dust =  L IR /L vs stellar age (F)IR - excess Stellar luminosity (bolometric) How ?

L6 - Stellar Evolution I: November-December, Gas Disks to Debris Disks – Evolution ? Spangler et al Clusters Individual stars (= 1 zodi)

L6 - Stellar Evolution I: November-December, HR 4796A  Pic HD Rieke et al. 2005, ApJ 620,  m Spitzer data 266 ms stars

L6 - Stellar Evolution I: November-December, Debris Disks - Properties debris (collision products) or particulate (gas free) percentage of Main Sequence stars (15%?) (observationally) biased towards Spectral Type A for (detectable) ages <400 Myr Habing et al. 1999, 2001 disk sizes 100 to 2000 AU disk masses >1 to 100 M Moon (small grains) see Ph. Thebault’s lecture Pre-IRAS Solar system Zodi US Navy Chaplain G. Jones 1855 AJ 4, 94 Vega Blackwell et al. 1983

L6 - Stellar Evolution I: November-December,

L6 - Stellar Evolution I: November-December, How much Gas in Dusty Debris Disks ? Disk evolution hypothesis: gas-rich to gas-poor Census of material (m gas /m dust ): planet formation planet formation: enough gas for GPs ? planet formation: time scales ? planet formation: seeds of Life ? See astrobiology lecture

L6 - Stellar Evolution I: November-December, Putting it all together Outflows Infall Disks L 1551 IRS 5 - a protostellar binary

L6 - Stellar Evolution I: November-December, L 1551 IRS 5 Jet blue 10´´ Molecular Outflow – CO blue 2 arcmin Optical Image (NTT, R-band)

L6 - Stellar Evolution I: November-December, Jets !!! – HST-R + spectroscopy Fridlund & Liseau 1998, ApJ 499, L75 N: Bright and Fast S: Faint and Slow

L6 - Stellar Evolution I: November-December, Also 2 Radio Jets – 3.5 cm VLA (arcsec) Rodriguez et al. 2003, ApJ 586, L137 Counter jet(s)

L6 - Stellar Evolution I: November-December, Proper Motion of Disk Sources - VLA 2cm Rodriguez et al. 2003, ApJ 583, 330

L6 - Stellar Evolution I: November-December, Stahler et al. - Stahler - Palla & Stahler 1980 through 1993 F. Palla, priv. communication Mass-Radius relation (M/R)

L6 - Stellar Evolution I: November-December, Putting it all together: observation + theory of infall + theory of mass loss L 1551 IRS 5 - a protostellar binary

L6 - Stellar Evolution I: November-December, Putting it all together: observation + theory of infall + theory of mass loss L 1551 IRS 5 - a protostellar binary

L6 - Stellar Evolution I: November-December, adapted from Liseau, Fridlund & Larsson 2005, ApJ, 619, 959 MHD x-wind models: ang. momentum parameter J

L6 - Stellar Evolution I: November-December,

L6 - Stellar Evolution I: November-December, Stellar Atmosphere Models Observed Spectrum (upper curves) Combined Rotating Model (lower )

L6 - Stellar Evolution I: November-December, After collaps and /or main accretion phase: Pre-main-sequence evolution begins next lecture by G. Gahm

L6 - Stellar Evolution I: November-December, L 6: conclusions circumstellar disks are a consequence of star formation disks and bipolar outflows/jets are connected disks form potentially planetray systems L 6: open questions what are the physics of disks and their outflows ? how do disks evolve ? what fraction forms planetary systems ? when and how ?