Rapidity Dependence of Pion Elliptic Flow Hironori Ito 1 Erik Johnson 2 Steve Sanders 2 BRAHMS Collaboration 1 Brookhaven National Laboratory 2 University.

Slides:



Advertisements
Similar presentations
Results from BRAHMS experiment at RHIC Pawel Staszel Niels Bohr Institute for the BRAHMS Collaboration.
Advertisements

Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
RHIC AGS Users Meeting 12 May BRAHMS Highlights Ramiro Debbe for the BRAHMS collaboration Physics Department.
High p T Suppression at Forward Rapidities Catalin Ristea Niels Bohr Institute, Copenhagen for the BRAHMS Collaboration XXXV International Symposium on.
June 17, 2003NN2003, Moscow, Jens Jørgen Gaardhøje, Niels Bohr Institute1 n100 AGeV AGeV Au+Au Ecm =  s  40 TeV THE LITTLE BIG BANG and search.
June 17, 2003NN2003, Moscow, Jens Jørgen Gaardhøje, Niels Bohr Institute1 n100 AGeV AGeV Au+Au Ecm =  s  40 TeV THE LITTLE BIG BANG and search.
Michael Murray1 Global Detectors Flavor Dynamics Michael Murray for BRAHMS C. Arsene 12, I. G. Bearden 7, D. Beavis 1, S. Bekele 12, C. Besliu 10, B. Budick.
Anisotropic Flow at RHIC Jiayun Chen (for Collaboration) Institute of Particle Physics, HZNU, Wuhan, , P.R.China Brookhaven National Lab, Upton,
Particle Production in p + p Reactions at GeV K. Hagel Cyclotron Institute Texas A & M University for the BRAHMS Collaboration.
Baryon-to-meson production in a wide range of baryo-chemical potential at RHIC Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University.
Transverse and Longitudinal Dynamics at RHIC Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University SQM 2007 Levo č a, 24–
Baryon-to-meson production in a wide range of baryo-chemical potential at RHIC Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University.
1 Mar. 26 SQM2006 J.H. Lee (BNL) Recent Results from BRAHMS J.H. Lee Physics Department Brookhaven National Laboratory For the Collaboration March
Phases of matter in the BRAHMS experiment Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University for the BRAHMS Collaboration.
Winter Workshop, Big Sky, February 121 Flemming Videbaek Physics Department, BNL What did we learn from 200 and 62 GeV pp collisions at RHIC ? A BRAHMS.
J.H. Lee BNL Correlations Fest, June 2002, BNL HBT in BRAHMS.
H. Ito University of Kansas For the BRAHMS Collaboration The BRAHMS Institutions 1 Brookhaven National Laboratory, Upton, NY 11973, U.S.A. 2 Institut de.
P + p at 200 GeV K. Hagel Cyclotron Institute, Texas A & M for the BRAHMS Collaboration The spectrometers Particle antiparticle ratios –  s dependence.
BRAHMS High p T Results from the BRAHMS Experiment Zhongbao Yin Department of Physics, University of Bergen for the BRAHMS Collaboration.
QM’05 Budapest, HungaryHiroshi Masui (Univ. of Tsukuba) 1 Anisotropic Flow in  s NN = 200 GeV Cu+Cu and Au+Au collisions at RHIC - PHENIX Hiroshi Masui.
BRAHMS 16. August 2004 ICHEP04 Beijing, Kina I.G.Bearden, Niels Bohr Institute 1 BRAHMS Particle Production at Forward Rapidities with BRAHMS I.G. Bearden,
Transverse dynamics at y=0 in BRAHMS Bjørn H. Samset Transverse dynamics at RHIC, March 2003 A story of centrality dependent pt spectra of identified charged.
Recent Results from the BRAHMS Experiment at RHIC Paweł Staszel, Jagellonian University for the BRAHMS Collaboration Eighth Workshop on Non-Perturbative.
1 April 21 DIS2006 J.H. Lee (BNL) SSA in BRAHMS J.H. Lee (BNL) for BRAHMS Collaboration DIS2006, Tsukuba, April 2006 Short Introduction Preliminary results.
20-26 Feb Lake Louise Eun-Joo Kim Parton energy loss, saturation, and recombination at BRAHMS Eun-Joo Kim University of Kansas For the BRAHMS collaboration.
Fouad RAMI Institut Pluridisciplinaire Hubert Curien, Strasbourg  Introduction  The BRAHMS Experiment  Overview of Main Results  Bulk observables.
BRAHMS 22. Oktober 2004 Forward Physics Workshop, KU I.G.Bearden, Niels Bohr Institute 1 BRAHMS Particle Production Studied with BRAHMS I.G. Bearden, Niels.
1 Physics at forward rapidities How well does pQCD work p+p at 200 and 62 GeV Probing the initial condition d+Au collisions at 200 GeV Final state effects.
QM 2009, Knoxville1 Forward-Rapidity Azimuthal and Radial Flow of Identified Particles for = 200 GeV Au+Au and Cu+Cu Collisions S.J. Sanders (U. Kansas)
Large rapidity (y~3.2) data analysis from 200 GeV/c AuAu and pp runs Radoslaw Karabowicz Hot Matter Physics Department M. Smoluchowski Insititue of Physics.
2nd International Workshop on the critical point and the onset of deconfinement Charged mesons in Au+Au interactions at 62.4 AGeV Ionut Arsene for the.
Rapidity Dependence of Charged Hadron Yields in Central Au+Au Collisions at 200 GeV Djamel Ouerdane Niels Bohr Institute for the BRAHMS Collaboration Quark.
BRAH Broad RAnge Hadron MS Magnetic Spectrometers 2.3° 30° 90° 30° The BRAHMS HI and Spin Programs S. J. Sanders U. Kansas.
Charged-particle pseudorapidity densities in d-Au collisions at  s=200GeV/A Hironori Ito Brookhaven National Laboratory BRAHMS Collaboration.
Results from the BRAHMS Experiment at RHIC F.Rami* for the BRAHMS Collaboration * Institut de Recherches Subatomiques and Université Louis Pasteur, Strasbourg.
Results from First RHIC run QM 2001 January 15, 2001 Results from First RHIC run QM 2001 January 15, 2001 F.Videbœk Physics Department Brookhaven National.
Strangeness production in Au+Au collisions at RHIC Jens Ivar Jørdre University of Bergen, Norway.
Strangeness Measurements in BRAHMS J.H. Lee Physics Department Brookhaven National Laboratory For the BRAHMS Collaboration SQM2003 Mar  Results.
1 Results from the BRAHMS experiment at RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen for the BRAHMS collaboration Experimental setup Stopping.
1 Results from the BRAHMS experiment at RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen for the BRAHMS collaboration Experimental setup Stopping.
Incident-energy and system-size dependence of directed flow Gang Wang (UCLA) for STAR Collaboration  Introduction to directed flow  Detectors: ZDC-SMD,
Recent Results from BRAHMS from y=0 to y=3 I. G. Bearden Niels Bohr Institute University of Copenhagen, Denmark Quark Matter 2002, July 18-24, Nantes,
HIGHLIGHTS BRAHMS I.G. Bearden, Niels Bohr Institute QM'06 Shanghai 2 Outline BRAHMS Intermediate PT Soft physics.
BRAHMS Scanning the phases of QCD I. Arsene, I.G. Bearden, D. Beavis, C. Besliu, B. Budick, H. Bøggild, C. Chasman, C. H. Christensen, P. Christiansen,
Phases of matter in the BRAHMS experiment Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University for the BRAHMS Collaboration.
Jaipur, India Feb title Recent Results from BRAHMS R. Debbe for the BRAHMS Collaboration Physics Dept. Brookhaven National Laboratory.
April 29, 2001APS-Wash-DC, Jens Jørgen Gaardhøje, Niels Bohr Institute1 nReaction features in 65 AGeV Au + 65AGeV Au nElectromagnetic dissociation ndN(ch)/d.
DNP2004 Oct Hyatt Regency Chicago IL Ramiro Debbe for the BRAHMS collaboration Physics Department Forward Identified Particle Production in d+Au.
Recent Results from BRAHMS at RHIC J.H. Lee Physics Department Brookhaven National Laboratory For the BRAHMS Collaboration Current and Future Directions.
Truls Martin Larsen, BRAHMS Collaboration, QM Aug 1 Nuclear Modification factors in Cu-Cu and Au-Au collisions Truls Martin Larsen.
Rapidity dependence of charged particle yields with BRAHMS for Au+Au at 200 GeV Djamel Ouerdane for the BRAHMS collaboration Quark Matter 2002 Nantes,
Zbigniew Majka M.Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland Review of early results from BRAHMS experiment.
Kaon Production in Central Au+Au Collisions at 200 and 63 GeV Djamel Ouerdane Niels Bohr Institute for the BRAHMS Collaboration Strange Quark Matter 2004.
BRAHMS Heavy Ion Results and Perspectives Erik Bjorn Johnson RHIC & AGS Users Meeting June 8, 2006.
Eun-Joo Kim ( Chonbuk Nat. Univ.) Hongyan Yang ( Univ. of Bergen ) For the Collaboration N MF Nuclear Modification Factors at BRAHMS.
BRAHMS 18. JUNI 2003 BNL High Pt Colloquium I.G.Bearden, Niels Bohr Institute 1 BRAHMS High P T Measurements with BRAHMS I.G. Bearden, Niels Bohr Institute.
8 th February 2002Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT Brahms: Forward Physics at RHIC T1 MTPC1 T2 MTPC2 MRS: 90 deg 6.5 msr FS: 6 deg 0.8.
HAW Sep Maui, Hawaii Ramiro Debbe BNL Physics Department The excess of positive charged particles measured at forward rapidities in d+Au.
Anisotropic flow of charged and strange particles in PbAu collisions at 158 AGeV measured in CERES experiment J. Milošević 1),2) 1)University of Belgrade.
BRAHMS Zhongbao Yin Department of Physics, University of Bergen for the BRAHMS Collaboration High p T Spectra of Protons and Charged Pions in Au+Au and.
1 Physics at forward rapidities systems p+p at 200 and 62 GeV d+Au collisions at 200 GeV Au+Au collisions observables pt-spectra nuclear modification factor.
Baryon-to-meson production in a wide range of baryo-chemical potential at RHIC Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University.
BRAHMS Y RHIC: snn=130 GeV, and snn=200 GeV
Radoslaw Karabowicz for the BRAHMS Collaboration
Eun-Joo Kim University of Kansas For the BRAHMS collaboration
Soft Physics at Forward Rapidity
Identified hadron production in d+Au and p+p collisions at RHIC
Recent Results from the BRAHMS
BRAHMS overview Paweł Staszel,
Forward Physics with BRAHMS at RHIC University of Bergen & CERN
Presentation transcript:

Rapidity Dependence of Pion Elliptic Flow Hironori Ito 1 Erik Johnson 2 Steve Sanders 2 BRAHMS Collaboration 1 Brookhaven National Laboratory 2 University of Kansas

BRAHMS Collaboration I.Arsene, I.G. Bearden 7, D. Beavis 1, S.Bekele 11, C. Besliu 10, B. Budick 6, H. Bøggild 7, C. Chasman 1, C. H. Christensen 7, P. Christiansen 7, R.Clarke 10, R. Debbe 1,J. J. Gaardhøje, K. Hagel 8, H. Ito 1, A. Jipa 10, J. I. Jordre 10, F. Jundt 2, E.B.Johnson 11, J.I.Jordre 9, C.Jørgensen 7, R. Karabowicz 3, E. J. Kim 11, T.M. Larsen 7, J. H. Lee 1, Y. K.Lee 5, S.Lindal 12, G. Løvhøjden 2, Z. Majka 3, M. Murray 11, J. Natowitz 8, B.S.Nielsen 7, D.Ouerdane 7, R.Planeta 4, F. Rami 2, C.Ristea 7, O.Ristea 10, D. Röhrich 9, B. H. Samset 12, S. J. Sanders 11, R.A.Sheetz 1, P. Staszel 3, T.S. Tveter 12, F.Videbæk 1, R. Wada 8, H.Yang 9, Z. Yin 9, and I. S. Zgura 10 1 Brookhaven National Laboratory, USA, 2 IReS and Université Louis Pasteur, Strasbourg, France 3 Jagiellonian University, Cracow, Poland, 4 Institute of Nuclear Physics, Cracow, Poland, 5 Johns Hopkins University, Baltimore, USA, 6 New York University, USA, 7 Niels Bohr Institute, University of Copenhagen, Denmark, 8 Texas A&M University, College Station. USA, 9 University of Bergen, Norway, 10 University of Bucharest, Romania, 11 University of Kansas, Lawrence,USA, 12 University of Oslo Norway

BRAHMS Detector Setup Event plane detectors PID detectors

Event Plane Detectors Flow Ring 2 Si Ring 1 Tile Ring 1 Flow Ring 3 ● Flow Ring 2 (silicon strips): ● 42 segments per 2π ● -2 < η < 0.2 ● Flow Ring 3 (silicon strips): ● 42 segments per 2π ● -2 < η < 1.2 ● Si Ring 1 (silicon strips): ● 6 segments per 2π ● -2.4 < η < 0.8 ● Tile Ring 1 (scintillator tile): ● 6 segments per 2π ● -2 < η < -0.8

Introduction to Flow φ Initial spatial anisotropy......final momentum anisotropy...after rescattering leads to... Elliptic Flow: n = 2

Rapidity Dependence? Current Status PHOBOS and STAR have measured p T integrated v 2 over a wide pseudorapidity range. →p T integrated v 2 has strong pseudorapidity dependence. Charged Hadron STAR also measured charged hadron v 2 (p T ) at forward rapidity, and find a large p T dependence.

Method a,b and c are the Scintillator Tile, the Silicon Strip and the Beam-Beam counters Methods describe by A. M. Poskanzer and S. A. Voloshin Phys. Rev. C58 (1998) 1671 Nth order event plane Observed v 2 Event plane resolution correction Real v 2

Particle Identification at Midrapidity Time-of-Flight Identification ● Pions: 2.5 GeV/c ● Protons:4 GeV/c ● Kaons: 2 GeV/c

Particle Identification at Forward Rapidity RICH identification ● Pions:28 GeV/c ● Protons: 35 GeV/c ● Kaons: 28 GeV/c

Charged Hadron Errors are statistical only 10-20% Central Charged Hadron V 2 at Midrapidity Strong p T dependence is seen at midrapidity % Central Errors are statistical only

Pion V 2 at Midrapidity Errors are statistical only 10-20% central events...pion v 2 (p T ) is also consistent with STAR data. Error is statistical only 10-20% central events

Find strong p t dependence Pion Error is statistical only η = 3.2 Pion V 2 at Forward Rapidity Pion Errors are statistical only η = 0 Pions Error is statistical only η = 3.2 Pion elliptic flow at forward rapidity is very smilar to that at midrapidity %

η = 1 η = 3.2 η = 0 Rapidity Dependence Small η dependence found. η = 0 η = 1 η = 3.2 3D Hydro (Hirano) 3D Hydrodynamic calculation also shows a very small pseudorapidity dependence. Charged hadrons

p T Integrated v 2 Integrated v 2 are derived using the measured spectra and v 2 (p T ). (See a poster by C. Ristea.) Integrated v 2 are also relatively flat. GeV/c h h η = 0 η = 1 η = 3.2 3D Hydro (Hirano)

Centrality Dependence Large centrality dependence is seen for p T integrated v 2 — consistant with PHOBOS results. Centrality dependence at midrapidity

Conclusion ● v 2 (p T ) for charged hadrons and pions have been measured at midrapidity as well as at forward rapidity. ● v 2 (p T ) shows small pseudorapidity dependence—consistent with 3D Hydro model. ● η dependence of p T integrated v 2 is strongly sensitive to measured spectra. ● Strong centrality dependence observed. Proton and Kaon results are forthcoming.