Magnetic Neutron Diffraction the basic formulas

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Mechanism of the Verwey transition in magnetite Fe3O4
Crystal diffraction Laue Nobel prize Max von Laue
DIFFERENT TYPES OF MAGNETIC MATERIAS (a) Diamagnetic materials and their properties  The diamagnetism is the phenomenon by which the induced magnetic.
Solid State Physics 2. X-ray Diffraction 4/15/2017.
1 Experimental Determination of Crystal Structure Introduction to Solid State Physics
Physics of multiferroic hexagonal manganites RMnO 3 Je-Geun Park Sungkyunkwan University KIAS 29 October 2005.
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Chemical order & disorder in metallic alloy Calculation of Bragg and Diffuse Scattering Correlation length in the Mean-Field approach Correlation Length.
Condensed Matter Physics Sharp
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
Magnetism How to describe the physics: (1)Spin model (2)In terms of electrons.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Some features of Single Layered Manganites La 1-x Sr 1+x MnO 4 G. Allodi, C. Baumann, B. Büchner, D. Cattani, R. De Renzi, P. Reutler.
1/12/2015PHY 752 Spring Lecture 11 PHY 752 Electrodynamics 11-11:50 AM MWF Olin 107 Plan for Lecture 1: Reading: Chapters 1-2 in Marder’s text.
Crystal Lattice Vibrations: Phonons
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Department of Electronics Nanoelectronics 11 Atsufumi Hirohata 12:00 Wednesday, 18/February/2015 (P/L 006)
Magnetism III: Magnetic Ordering
FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory Emilio Artacho Department of Earth Sciences University of Cambridge.
Magnetic Properties of Materials
Lattice Vibrations, Part I
Magnetism and Magnetic Materials
Chapter 7 X-Ray diffraction. Contents Basic concepts and definitions Basic concepts and definitions Waves and X-rays Waves and X-rays Crystal structure.
Seillac, 31 May Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung,
Development of Domain Theory By Ampere in The atomic magnetic moments are due to “electrical current continually circulating within the atom” -This.
BRAVAIS LATTICE Infinite array of discrete points arranged (and oriented) in such a way that it looks exactly the same from whichever point the array.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Diamagnetism and Paramagnetism Physics 355. Free atoms… The property of magnetism can have three origins: 1.Intrinsic angular momentum (Spin) 2.Orbital.
The Story of Giant Magnetoresistance (GMR)
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Electronic Band Structures electrons in solids: in a periodic potential due to the periodic arrays of atoms electronic band structure: electron states.
Definition of the crystalline state:
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Introduction to Neutron Scattering Jason T. Haraldsen Advanced Solid State II 2/27/2007.
Theory of diffraction Peter Ballo.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
Reciprocal Lattices to SC, FCC and BCC
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
The Magnetic phase transition in the frustrated antiferromagnet ZnCr 2 O 4 using SPINS Group B Ilir Zoto Tao Hong Yanmei Lan Nikolaos Daniilidis Sonoko.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
The Structure and Dynamics of Solids
Ligand field theory considers the effect of different ligand environments (ligand fields) on the energies of the d- orbitals. The energies of the d orbitals.
The Structure and Dynamics of Solids
Magnetic Frustration at Triple-Axis  Magnetism, Neutron Scattering, Geometrical Frustration  ZnCr 2 O 4 : The Most Frustrated Magnet How are the fluctuating.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Applications of Spin-Polarized Photoemission P. D. Johnson, Annual Rev. Mater. Sci. 25 (1995) Combined spin –integrated/resolved detector: Giringhelli,
Monte Carlo methods applied to magnetic nanoclusters L. Balogh, K. M. Lebecki, B. Lazarovits, L. Udvardi, L. Szunyogh, U. Nowak Uppsala, 8 February 2010.
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
2. Wave Diffraction and Reciprocal Lattice Diffraction of Waves by Crystals Scattered Wave Amplitude Brillouin Zones Fourier Analysis of the Basis Quasicrystals.
IPCMS-GEMME, BP 43, 23 rue du Loess, Strasbourg Cedex 2
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Nanoelectronics Chapter 5 Electrons Subjected to a Periodic Potential – Band Theory of Solids
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Orbital Ordering and Exchange Interactions in RMnO 3 Perovskites J. B. Goodenough, U.T. Austin DMR
Transition Metal Oxide Perovskites: Band Structure, Electrical and Magnetic Properties Chemistry 754 Solid State Chemistry Lecture 22 May 20, 2002.
Evolution of the orbital Peierls state with doping
Dec , 2005 The Chinese University of Hong Kong
Ch.4 Atomic Structure of Solid Surfaces.
Hyperfine interaction studies in Manganites
Chapter 10 Magnetic Properties Introduction 10
B4 Single crystal growth of tunable quantum spin systems
Diffraction T. Ishikawa Part 1 Kinematical Theory 1/11/2019 JASS02.
Magnetic Properties of Complexes
Presentation transcript:

Magnetic Neutron Diffraction the basic formulas A.Daoud-aladine, (ISIS-RAL)

What’s a magnetic structure? Why study magnetic order? Example : Manganites The magnetic structure factor Using the k-vector Formalism (as required by the Fullprof input) (Alternative to Shubnikov symmetry, which are TABULATED crystallographic magnetic space groups : this is however restricted to commensurate structures) Pitfalls

What’s a magnetic structure? (atomic) magnetic moments (m) arise from quantum effects in atoms/ions with unpaired electrons Ni2+ Intra-atomic electron correlation Hund’s rule(maximum total S) + Spin-orbit + CEF core « Classical description» « Quantum description» m = gJ J (J=L+S 4f-rare earths) m = gS S (3d-transition metals)

What’s a magnetic structure? Magnet: crystal containing magnetic atoms kT >> Jij, Jij paramagnetic (disordered) state Temperature (entropy) overcomes magnetic energy: Entropy essentially dominated by local magnetic moment fluctuations

What’s a magnetic structure? Magnet: crystal contaning magnetic atoms kT < Jij, Jij Exemple here: Jij>0 Antiferromagnetic coupling (AF) Magnetic energy overcomes the entropy :  Quasi-static configuration of magnetic moment with small fluctuations that are made cooperative by the magnetic exchange (spin waves excitations )

Why study magnetic order? Fundamental properties of condensed matter. Exchange interactions related to the electronic structure. The first (necessary) step before determining the exchange interactions (generally, with inelastic neutron scattering) Permanent magnet industry. Chemical substitutions controlling single ion anisotropy, strength of effective interactions, canting angles, etc: NdFeB materials, SmCo5, hexaferrites, spinel ferrites. Spin electronics, thin films and mutilayers

Magnetic scattering of a single atom From Introduction to the Theory of Thermal Neutron Scattering, G SQUIRES – Cambridge University Press (1978) Q= kF - kI r R kI=2/ uI core kF=2/ uF ri Dipolar interaction term with one electron core Total Si si => vector scattering amplitude for one atom

Example: RMnO3 manganites LaMnO3 TN=150K Ideal cubic Perovskite TbMnO3 TN=41K O Mn Pnma La/Tb Site A m [010]O [001]C [101]O [010]C n Mn-O-Mn m n a a

Example: RMnO3 manganites LaMnO3 TN=150K AF Commensurate structure T. Goto, et al. Phys. Rev. Lett. 92, 257201 (2004)

Example: RMnO3 manganites LaMnO3 TN=150K LaMnO3 : 50K and 150 K AF Commensurate structure

Example: RMnO3 manganites LaMnO3 TN=150K Electronic structure of Mn3+ (x=0) dxy dyz dxz Jahn-Teller Distorsion dz2 dx2-y2 O Hund JH Crystal field x2 eg 3d4 AF S=3/2 Commensurate structure t2g (e- localized) scattering amplitude for one atom, tabulated f(Q)

Example: RMnO3 manganites LaMnO3 TN=150K AF Commensurate structure T. Goto, et al. Phys. Rev. Lett. 92, 257201 (2004)

Example: RMnO3 manganites TbMnO3 TN2<T<TN1=41K Sinusoidal LaMnO3 TN=150K T<TN2=23K Cycloid AF Commensurate structure Incommensurate structures

What’s a magnetic structure? The magnetic structure factor Pitfalls Why study magnetic order? Example : Manganites The magnetic structure factor Pitfalls

Magnetic scattering of a single atom From Introduction to the Theory of Thermal Neutron Scattering, G SQUIRES – Cambridge University Press (1978) Q= kF - kI r R kI=2/ uI core kF=2/ uF ri Dipolar interaction term with one electron Total Si si core => vector scattering amplitude for one atom

Magnetic scattering from a magnet Magnetisation density: M(r)=MS(r)+ML(r) kI=2/ uI kF=2/ uF n Q= kF - kI Magnetic interaction vector for a crystal Magnetic structure factor => vector scattering amplitude for one atom In the magnetic cell

Magnetic structure factors and interaction vectors Q=Q e M(Q) Only the perpendicular component of M to Q=2h contributes to scattering q q M(Q)xQ M(Q) Magnetic interaction vector for a crystal Magnetic structure factor => vector scattering amplitude for one atom In the magnetic cell

Propagation vectors : Structure factor in crystal cell Reciprocal k-space Crystal+AF mag structure a3mag = a3 a1mag = 2a1 a2mag = a2 Q=(hmagkmaglmag) b1mag b1mag = b1/2 b2 k b1 R(101) a3 Nuclear reflections a1mag a2 a1 H=h.b1+k. b2+l. b3

Propagation vectors : Structure factor in crystal cell In the magnetic cell Crystal+AF mag structure Reciprocal space Q=(hmagkmaglmag) Atom 1 Real space Atom 2 R(101) a3 (1) (2) a1mag a2 a1 the AF arrangement =>… hmag necessarily odd (type, 2h+1)

Propagation vectors and Structure factor in crystal cell Reciprocal space Crystal+AF mag structure b2 Q b1 b1mag R(101) a3 (1) (2) Nuclear reflections a1mag a2 a1 Magnetic reflections a1mag = 2a1 a2mag = a2 a3mag = a3 Q=hmag.b1mag+k. b2+l. b3 b1mag = b1/2 the AF arrangement =>… hmag necessarily odd (type, 2h+1)

Propagation vectors and Structure factor in crystal cell Reciprocal space Crystal+AF mag structure Q= H + k k=(½00) « Propagation vector » H b2 Q b1 b1mag R(101) a3 (1) (2) Nuclear reflections a1mag a2 a1 Magnetic reflections a1mag = 2a1 a2mag = a2 a3mag = a3 Q=(2h+1). b1/2+k. b2+l. b3 b1mag = b1/2 Q=h.b1+k. b2+l.b3 + b1/2

Propagation vectors and Structure factor in crystal cell Reciprocal space Crystal+AF mag structure k=(½00) b2 Q H b1 b1mag R(101) a3 (1) (2) Nuclear reflections a1mag a2 a1 a1 Magnetic reflections m[n]i = Si. (-1)n1 Q=(2h+1). b1/2+k. b2+l. b3 Q=h.b1+k. b2+l.b3 + b1/2 because k.Rn=n1/2 Q= H + k

Propagation vectors and Structure factor in crystal cell Reciprocal space Crystal+AF mag structure k=(½00) b2 Q H b1 b1mag R(101) a3 (1) (2) a1mag a2 a1 m[n]i = Si. (-1)n1 because k.Rn=n1/2

Propagation vectors and Structure factor in crystal cell : case 1 Reciprocal space Magnetic structure k=(½00) -k b2 Q H In our example (AF): - k equivalent to –k (2k is a reciprocal lattice vector, or k at the border of the brillouin zone) - Only k sufficient to index all the magnetic reflections, - And Skj must be real b1 b1mag

Propagation vectors and Structure factor in crystal cell : case 2 Reciprocal space Magnetic structure k b2 -k H In general k NOT equivalent to –k, so a set of {k}=k,-k is needed - Skj are complex vectors b1 - necessary condition for real mnj : Formalism Required to describe Incommensurate structures

Magnetic scattering and structure factors For non-polarised neutrons Magnetic Phase: Nuclear Phase: Scattering vector h=H Arrangement of the moments Atomic positions Structural model Structure Factor/ Intensity

What’s a magnetic structure? The magnetic structure factor Pitfalls Why study magnetic order? Example : Manganites The magnetic structure factor Pitfalls

Pitfalls : k=(000) Reciprocal space Magnetic structure b2 When k=(000) (primitive P): - mni=Skj whatever n: this only means that the cell of the the magnetic structure is the same as that of the nuclear structure (not necessarily ferromagnetic, if more than 2 atoms/cell) b1 Nuclear reflections Magnetic reflections h= H

Pitfalls : k=(000) mni=Skj Sk1= -Sk2= -Sk3= Sk4, all reals vectors LaMnO3 TN=150K Orthorhombic Pnma k=(000) mni=Skj Sk1= -Sk2= -Sk3= Sk4, all reals vectors 3 2 4 LaMnO3 : 50K and 150 K 1 AF Commensurate AF structure

Pitfalls : Centred cells Reciprocal space Magnetic structure (110) (-110) b2 b1p b2p I/F-centred lattice (2D): b1 a2 a2p a1p a1 Nuclear reflections

Pitfalls : Centred cells Reciprocal space Magnetic structure (110) (-110) b2 b1p b2p I/F-centred lattice (2D): b1 a2 a2p a1p k=(000) a1 Nuclear reflections Magnetic reflections h= H

Pitfalls : Centred cells Reciprocal space Magnetic structure (110) (-110) b2 k=(100) Magnetic reflections h= H + k kp=(½½0) b1p b2p AF order on a centred lattice b1 a2 a2p a1p a1 Nuclear reflections

Pitfalls : Centred cells Reciprocal space Magnetic structure (110) (-110) b2 b1p b2p I-centred lattice : - k equivalent to –k (2k is a reciprocal lattice vector) This is because {Rn} contains type (½½½)… translations, - k vectors, which can have integer components, have in fact non-integer components in the primitive cell b1 k=(100) kp=(½½0) Nuclear reflections Magnetic reflections h= H + k

Magnetic scattering and structure factors For non-polarised neutrons Magnetic Phase: Nuclear Phase: Scattering vector h=H Arrangement of the moments Atomic positions Structural model Structure Factor/ Intensity