Study of exclusive radiative B decays with LHCb Galina Pakhlova, (ITEP, Moscow) for LHCb collaboration Advanced Study Institute “Physics at LHC”, LHC Praha-2003,

Slides:



Advertisements
Similar presentations
Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
Advertisements

14 Sept 2004 D.Dedovich Tau041 Measurement of Tau hadronic branching ratios in DELPHI experiment at LEP Dima Dedovich (Dubna) DELPHI Collaboration E.Phys.J.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Measurements of sin2  from B-Factories Masahiro Morii Harvard University The BABAR Collaboration BEACH 2002, Vancouver, June 25-29, 2002.
ICFP 2005, Taiwan Colin Gay, Yale University B Mixing and Lifetimes from CDF Colin Gay, Yale University for the CDF II Collaboration.
Radiative B Decays (an Experimental Overview) E.H. Thorndike University of Rochester CLEO Collaboration FPCP May 18, 2002.
16 May 2002Paul Dauncey - BaBar1 Measurements of CP asymmetries and branching fractions in B 0   +  ,  K +  ,  K + K  Paul Dauncey Imperial College,
Radiative LHCb Vanya BELYAEVVanya BELYAEV (NIKHEF/Amsterdam & ITEP/Moscow) Vanya BELYAEV On behalf of LHCb Collaboration.
Search for B s oscillations at D  Constraining the CKM matrix Large uncertainty Precise measurement of V td  properly constrain the CKM matrix yield.
Pakhlov Pavel (ITEP, Moscow) Why B physics is still interesting Belle detector Measurement of sin2  Rare B decays Future plans University of Lausanne.
Measurements of Radiative Penguin B Decays at BaBar Jeffrey Berryhill University of California, Santa Barbara For the BaBar Collaboration 32 nd International.
MC Study of B°  S Jianchun Wang Syracuse University BTeV meeting 06/27/01.
Toru Iijima & Koji Ikado (Talk presented by T.I.) Nagoya University May 15, 2006 “Flavour in the LHC CERN The First Evidence of B   from Belle.
1 B s  J/  update Lifetime Difference & Mixing phase Avdhesh Chandra for the CDF and DØ collaborations Beauty 2006 University of Oxford, UK.
Takeo Higuchi Institute of Particle and Nuclear Studies, KEK Jan 21, 2004 Hawaii, USA Super B Factory Workshop Charged Higgs Search with B  D   
B Production and Decay at DØ Brad Abbott University of Oklahoma BEACH 2004 June 28-July 3.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
Radiative Leptonic B Decays Edward Chen, Gregory Dubois-Felsmann, David Hitlin Caltech BaBar DOE Presentation Aug 10, 2005.
Analysis work by: Rachid Ayad Sheldon Stone Jianchun Wang CBX note available: /homes/cleo/sls/ds4pi.ps Status of B  D  (4  )   analysis Jianchun.
Beauty 2006 R. Muresan – Charm 1 Charm LHCb Raluca Mureşan Oxford University On behalf of LHCb collaboration.
Measurement of B (D + →μ + ν μ ) and the Pseudoscalar Decay Constant f D at CLEO István Dankó Rensselaer Polytechnic Institute representing the CLEO Collaboration.
Donatella Lucchesi1 B Physics Review: Part II Donatella Lucchesi INFN and University of Padova RTN Workshop The 3 rd generation as a probe for new physics.
Luca Lista L.Lista INFN Sezione di Napoli Rare and Hadronic B decays in B A B AR.
Tau Jet Identification in Charged Higgs Search Monoranjan Guchait TIFR, Mumbai India-CMS collaboration meeting th March,2009 University of Delhi.
Cano Ay, Johannes Gutenberg Universität, B mixing and flavor oscillations at DØ Cano Ay University Mainz for the DØ Collaboration 23 may.
Rare B  baryon decays Jana Thayer University of Rochester CLEO Collaboration EPS 2003 July 19, 2003 Motivation Baryon production in B decays Semileptonic.
M. Adinolfi - University of Bristol1/19 Valencia, 15 December 2008 High precision probes for new physics through CP-violating measurements at LHCb M. Adinolfi.
B c mass, lifetime and BR’s at CDF Masato Aoki University of Tsukuba For the CDF Collaboration International Workshop on Heavy Quarkonium BNL.
1 Performance Studies for the LHCb Experiment Performance Studies for the LHCb Experiment Marcel Merk NIKHEF Representing the LHCb collaboration 19 th.
DIS 2004, Strbske Pleso,April LHCb experiment sensitivity to CKM phases and New Physics from mixing and CP violation measurements in B decays LHCb.
CP violation measurements with the ATLAS detector E. Kneringer – University of Innsbruck on behalf of the ATLAS collaboration BEACH2012, Wichita, USA “Determination.
1 Multi-body B-decays studies in BaBar Ben Lau (Princeton University) On behalf of the B A B AR collaboration The XLIrst Rencontres de Moriond QCD and.
Gavril Giurgiu, Carnegie Mellon, FCP Nashville B s Mixing at CDF Frontiers in Contemporary Physics Nashville, May Gavril Giurgiu – for CDF.
Pavel Krokovny Heidelberg University on behalf of LHCb collaboration Introduction LHCb experiment Physics results  S measurements  prospects Conclusion.
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->
Summary of  2 measurements at Super KEKB Hirokazu Ishino Tokyo Institute of Technology 19 Dec., 2006.
11 th July 2003Daniel Bowerman1 2-Body Charmless B-Decays at B A B AR and BELLE Physics at LHC Prague Daniel Bowerman Imperial College 11 th July 2003.
Radiative penguins at hadron machines Kevin Stenson University of Colorado.
High precision and new CP violation measurements with LHCb Michael Koratzinos, CERN EPS HEP 99 Tampere,15 July 1999.
Charm Physics Potential at BESIII Kanglin He Jan. 2004, Beijing
M. Muniruzzaman University of California Riverside For PHENIX Collaboration Reconstruction of  Mesons in K + K - Channel for Au-Au Collisions at  s NN.
LHCb: Xmas 2010 Tara Shears, On behalf of the LHCb group.
B  K   p  and photon spectrum at Belle Heyoung Yang Seoul National University for Belle Collaboration ICHEP2004.
3/13/2005Sergey Burdin Moriond QCD1 Sergey Burdin (Fermilab) XXXXth Moriond QCD 3/13/05 Bs Mixing, Lifetime Difference and Rare Decays at Tevatron.
Tariq Aziz Tata Institute, Mumbai, India ( BELLE Collaboration ) Tariq Aziz Tata Institute, Mumbai, India ( BELLE Collaboration ) Recontre de Moriond/QCD,
A. Drutskoy, University of Cincinnati B physics at  (5S) July 24 – 26, 2006, Moscow, Russia. on the Future of Heavy Flavor Physics ITEP Meeting B physics.
Paul Balm - EPS July 17, 2003 Towards CP violation results from DØ Paul Balm, NIKHEF (for the DØ collaboration) EPS meeting July 2003, Aachen This.
1 Koji Hara (KEK) For the Belle Collaboration Time Dependent CP Violation in B 0 →  +  - Decays [hep-ex/ ]
Measurements of sin2  1 in processes at Belle CKM workshop at Nagoya 2006/12/13 Yu Nakahama (University of Tokyo) for the Belle Collaboration Analysis.
Measurement of  2 /  using B   Decays at Belle and BaBar Alexander Somov CKM 06, Nagoya 2006 Introduction (CP violation in B 0   +   decays) Measurements.
LHCb performance for B s  J/   and B d  J/  K s decays Jeroen van Hunen.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Matthew Martin Johns Hopkins University for the CDF collaboration andBranching Ratios from Flavor Physics & CP Violation Ecole Polytechnique, Paris, France.
Mike HildrethEPS/Aachen, July B Physics Results from DØ Mike Hildreth Université de Notre Dame du Lac DØ Collaboration for the DØ Collaboration.
E. Devetak - IOP 081 Anomalous – from tools to physics Erik Devetak Oxford - RAL IOP 2008 Lancaster‏ Anomalous coupling (Motivation – Theory)
Jeroen van Hunen (for the LHCb collaboration) The sensitivity to  s and  Γ s at LHCb.
Jessica Levêque Rencontres de Moriond QCD 2006 Page 1 Measurement of Top Quark Properties at the TeVatron Jessica Levêque University of Arizona on behalf.
Search for a Standard Model Higgs Boson in the Diphoton Final State at the CDF Detector Karen Bland [ ] Department of Physics,
New Results in Charmless B Meson Decays at New Results in Charmless B Meson Decays at Justin Albert Univ. of Victoria 20 July, 2013 Representing the BaBar.
Measurements of  at LHCb Mitesh Patel (CERN) (on behalf of the LHCb Collaboration) 14th December 2006.
Guglielmo De Nardo for the BABAR collaboration Napoli University and INFN ICHEP 2010, Paris, 23 July 2010.
Open and Hidden Beauty Production in 920 GeV p-N interactions Presented by Mauro Villa for the Hera-B collaboration 2002/3 data taking:
1 outline ● Part I: some issues in experimental b physics ● why study b quarks? ● what does it take? ● Part II: LHCb experiment ● Part III: LHCb first.
Erik Devetak Oxford University 18/09/2008
γ determination from tree decays (B→DK) with LHCb
CP violation in the charm and beauty systems at LHCb
B  at B-factories Guglielmo De Nardo Universita’ and INFN Napoli
CP violation in Bs→ff and Bs → K*0K*0
Prospects for quarkonium studies at LHCb
Vincenzo Vagnoni INFN Bologna CKM Workshop Durham, April 8th 2003
Presentation transcript:

Study of exclusive radiative B decays with LHCb Galina Pakhlova, (ITEP, Moscow) for LHCb collaboration Advanced Study Institute “Physics at LHC”, LHC Praha-2003, B Physics Day, 11/07/2003

2 Physics motivation  Constraint on CKM matrix elements |V td /V ts | from the ratios of decay rates          s      s    Search for New Physics  Direct CP violation A CP < 1% in SM (tiny u quark contribution in loop) up to ~ 10% in SM extensions            s      Mixing-induced CP violation ~0 in SM (different  polarizations in   and    decays ) up to ~ 50% in SM extensions   s         with         e.g.       s      (Dalitz plot  analysis of   s     to extract flavour blind   s   )  Exotics, super rare decays   (s)   l + l - ,   (s)  , etc  Test of QCD      n  b    etc bs(d)  W t(c,u)

3 Experimental overview  The first exclusive radiative  penguin      was observed by CLEO in 1993                  Belle                      Upper limit BABAR    barion   Upper limit CLEO Statistics at B-factories is still not sufficient for stringent test of SM in CP violation in radiative decays and for observation of b  d       (4.3 ± 0.4)×10 -5 PDG 2003      (3.8 ± 0.5)×10 -5 PDG 2003  CP    ± 0.07 PDG 2003       (1.3 ± 0.5)×10 -5 PDG 2003

4    decay vertex primaryvertex  decay distance Impact Parameter (IP)  N b hadrons    year  all types of b hadrons   bb /  inel ~    high charged and neutral multiplicity  few primary vertices  event at LHCb

5 Challenge  Electromagnetic penguins are indeed rare B decays  inclusive Br  b  s    exclusive Br are ~ smaller  b  d  are further suppressed by |V td /V ts | 2  f  b   S  f(  b     Background sources  Huge combinatorial background from generic b  b events  Minimum bias events   X    decays     separation using different shower shape  for X=V polarization can be exploited

6 Search for CP violation  Direct CP violation  no tag and lifetime analysis are required  Systematic errors are of great importance: fake (non-CP) asymmetries  different  and  production rates in pp interactions  detector asymmetries Hopefully can be calibrated with other final states e.g.    J/    Mixing-induced CP violation  need to tag  flavour  proper time resolution is critical especially for   S  due to fast oscillations ( x s >19) to be resolved

7 Can we measure radiative decays at LHCb           Direct CP  Energetic   huge soft  and   background can be effectively removed dedicated trigger selects high E T  photons at Level 0  two charged tracks     vertex reconstruction    S      s decay & mixing-induced CP  small    narrow  cut; small  yield in  decays:  background conditions are more favourable  extremely small opening angle        problem with   S vertex (proper time) resolution               b  d   small    narrow  cut   problem with combinatorial background from    in progress (not presented here)

8      reconstruction Select        combinations  Tracks are consistent with      hypothesis  Reject     tracks from all primary vertices (   IP >16)      produce secondary vertex (        PDG    MeV/c 2       PDG    MeV/c 2  E T  GeV (close to L0 trigger requirement)   E* T  GeV  Select primary vertex with minimum IP of   candidate  Require   momentum and flight direction to be consistent  (    mrad)    helicity angle: in   rest frame |cos (p B, p K )|<0.7

9 Background suppression (1) No   IP cut optimized   IP  > 16 SBSBSBSB  comb  Require large IP of      to all reconstructed primary vertex (   IP  > 16)  suppress primary tracks  especially effective background suppression in events with multiple interactions

10 Background suppression (2) Transverse energy E* T  in    rest frame  vs E T  in the lab frame E T  GeV E T  GeV powerful against low energy  and    E* T  GeV  E* T  GeV rejects also soft   candidates E T , GeV E* T  GeV      E* T  GeV bb inclusive E T , GeV

11 Background suppression (3)    reconstructed   momentum reconstructed   decay vertex reconstructed primary vertex Angle  between    momentum Angle  between    momentum and   flight direction and   flight direction  should be 0 for real    candidates (smeared by  vertex resolution)  randomly distributed for combinatorial background One of the most powerful cut!  signal ~ 60% ;  bb < 1%

12   suppression Significant suppression of fast   is expected after application of special algorithm for    separation based on shower shape (to be implemented soon) (to be implemented soon) Contribution from        is small and can be further suppressed exploiting    polarization :    helicity states 0       0                     helicity: in    rest frame cos (p B, p K ) in    rest frame cos (p B, p K )

13      : signal and background summary      : signal and background summary ~ 4 min LHCb 0 events in ( ) GeV/c 2 mass window after trigger and off-line selection with all available MC statistics ~ 10.3 M events ~ 10.3 M events ~ 54 hours LHCb    MeV/c 2 In blue:  contribution from       after trigger and off-line cuts  of      Br          PDG 2003

14      Annual yield and CP sensitivity Efficiency, [%] N year   CP  Reconstruction & acceptance selectiontriggertotal K < 0.01 BACKGROUND / SIGNAL < 90 % CL Assuming: Assuming: Br      = ( 4.3  0.4 ) × Br      = ( 4.3  0.4 ) × f  b     = 0.39 f  b     = 0.39 N      N      N      N       CP   N      N     

15   S  reconstruction Two different tasks Two different tasks  Branching ratio measurement similar to      reconstruction:  Tracks are consistent with      hypothesis  Reject     tracks from all primary vertices (   IP > 4)      produce secondary Vertex (           PDG  MeV/c 2  E T  GeV (close to L0 trigger requirements)   E* T  GeV  Select primary vertex with minimum IP of   S candidate    S momentum  and  flight direction to be consistent      mrad ( worse   S vertex resolution)    helicity : in  rest frame |cos(p B,p K )| < 0.7  Search for mixing-induced CP: selection to be re-optimized selection to be re-optimized

16   s  background suppression      narrow  <  MeV/c 2 Background is mainly due to real  Fortunately small  yield from  decays.         After L0xL1 trigger & off-line cuts bb inclusive: 0 event in mass window  GeV/c 2 from ~ 10.3 M events ( ~ 4 min LHCb)   s     s   assuming  Br        Br   s     

17   s  after trigger and off-line cuts   s  after trigger and off-line cuts Efficiency [%] N year reconstr. & accept. selectiontriggertotal K BACKGROUND / SIGNAL < % CL limited by MC statistics, expected to be better Assuming: Assuming: Br   s   = ( 4.3  0.4 ) × Br   s   = ( 4.3  0.4 ) × f  b    S  = 0.10 f  b    S  = 0.10  MeV/c 2 ~ 87 hours LHCb

18 Search for  mixing induced CP in   S  simple vertex fit    fs     fs     fs  “direction” vertex fit    fs     fs     fs    S  proper time resolution Main problem: Proper time resolution is critical:  dominated by poor  vertex resolution  kaons are almost collinear  no extra  information on   s vertex from  Improvement can be achieved:  Constrain the   s flight direction to   s momentum: (“direction” vertex fit) Improve vertex resolution Improve vertex resolution by factor > 2.5 by factor > 2.5  Select kinematical region with the better vertex (proper time) resolution: (slow  larger  opening angle)

19   s  lifetime resolution cuts re-optimization for CP violation study Achieved lifetime resolution is close to those for charged modes. Estimation of CP violation sensitivities is in progress Require: cos   , E T  GeV, tighter cut No cut E* T    S  proper time resolution, ps cos     S  proper time resolution, ps Decay angle   (between  momentum  in rest frame of   s and   s flight direction) is convenient variable to select the kinematical region that provides the better  proper time resolution  fs  fs

20 Conclusion            record statistical sensitivity in direct CP violation  (A CP )< 0.01 for one year LHCb. Stringent test of SM extensions!  systematic errors to be studied carefully   S       precise measurement of the branching fraction with ~2% accuracy for one year LHCb  For indirect CP violation   S proper time resolution is critical  advanced fit vertex procedure and dedicated cut optimization allow to hope on reasonable sensitivity Others channels of interest               |V td /V ts |       direct CP violation        s    mixing-induced CP violation           why not  under study