1 Results from the BRAHMS experiment at RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen for the BRAHMS collaboration Experimental setup Stopping.

Slides:



Advertisements
Similar presentations
Results from BRAHMS experiment at RHIC Pawel Staszel Niels Bohr Institute for the BRAHMS Collaboration.
Advertisements

Dec 6, 2001BH-symposium, Jens Jørgen Gaardhøje, Niels Bohr Institute1 nFirst physics at RHIC with 65 AGeV + 65 AGeV and 100 AGeV AGeV Au+Au collisions.
RHIC AGS Users Meeting 12 May BRAHMS Highlights Ramiro Debbe for the BRAHMS collaboration Physics Department.
High p T Suppression at Forward Rapidities Catalin Ristea Niels Bohr Institute, Copenhagen for the BRAHMS Collaboration XXXV International Symposium on.
June 17, 2003NN2003, Moscow, Jens Jørgen Gaardhøje, Niels Bohr Institute1 n100 AGeV AGeV Au+Au Ecm =  s  40 TeV THE LITTLE BIG BANG and search.
June 17, 2003NN2003, Moscow, Jens Jørgen Gaardhøje, Niels Bohr Institute1 n100 AGeV AGeV Au+Au Ecm =  s  40 TeV THE LITTLE BIG BANG and search.
Sept 4, 2001Paris, Jens Jørgen Gaardhøje, Niels Bohr Institute1 nReaction features in 65 AGeV + 65 AGeV and 100 AGeV AGeV Au-AU collisions nEM dissociation.
Michael Murray1 Global Detectors Flavor Dynamics Michael Murray for BRAHMS C. Arsene 12, I. G. Bearden 7, D. Beavis 1, S. Bekele 12, C. Besliu 10, B. Budick.
Particle Production in p + p Reactions at GeV K. Hagel Cyclotron Institute Texas A & M University for the BRAHMS Collaboration.
Baryon-to-meson production in a wide range of baryo-chemical potential at RHIC Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University.
Transverse and Longitudinal Dynamics at RHIC Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University SQM 2007 Levo č a, 24–
Baryon-to-meson production in a wide range of baryo-chemical potential at RHIC Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University.
1 Mar. 26 SQM2006 J.H. Lee (BNL) Recent Results from BRAHMS J.H. Lee Physics Department Brookhaven National Laboratory For the Collaboration March
Phases of matter in the BRAHMS experiment Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University for the BRAHMS Collaboration.
What Happened in China ?.  Gluons can begin to fuse with high enough gluon density.  Saturation will limit parton production  Final state charged particle.
J.H. Lee BNL Correlations Fest, June 2002, BNL HBT in BRAHMS.
Tatsuya Chujo (BNL) for the PHENIX Collaboration
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
H. Ito University of Kansas For the BRAHMS Collaboration The BRAHMS Institutions 1 Brookhaven National Laboratory, Upton, NY 11973, U.S.A. 2 Institut de.
P + p at 200 GeV K. Hagel Cyclotron Institute, Texas A & M for the BRAHMS Collaboration The spectrometers Particle antiparticle ratios –  s dependence.
BRAHMS High p T Results from the BRAHMS Experiment Zhongbao Yin Department of Physics, University of Bergen for the BRAHMS Collaboration.
BRAHMS 16. August 2004 ICHEP04 Beijing, Kina I.G.Bearden, Niels Bohr Institute 1 BRAHMS Particle Production at Forward Rapidities with BRAHMS I.G. Bearden,
Transverse dynamics at y=0 in BRAHMS Bjørn H. Samset Transverse dynamics at RHIC, March 2003 A story of centrality dependent pt spectra of identified charged.
Recent Results from the BRAHMS Experiment at RHIC Paweł Staszel, Jagellonian University for the BRAHMS Collaboration Eighth Workshop on Non-Perturbative.
1 April 21 DIS2006 J.H. Lee (BNL) SSA in BRAHMS J.H. Lee (BNL) for BRAHMS Collaboration DIS2006, Tsukuba, April 2006 Short Introduction Preliminary results.
20-26 Feb Lake Louise Eun-Joo Kim Parton energy loss, saturation, and recombination at BRAHMS Eun-Joo Kim University of Kansas For the BRAHMS collaboration.
Fouad RAMI Institut Pluridisciplinaire Hubert Curien, Strasbourg  Introduction  The BRAHMS Experiment  Overview of Main Results  Bulk observables.
BRAHMS 22. Oktober 2004 Forward Physics Workshop, KU I.G.Bearden, Niels Bohr Institute 1 BRAHMS Particle Production Studied with BRAHMS I.G. Bearden, Niels.
1 Physics at forward rapidities How well does pQCD work p+p at 200 and 62 GeV Probing the initial condition d+Au collisions at 200 GeV Final state effects.
QM 2009, Knoxville1 Forward-Rapidity Azimuthal and Radial Flow of Identified Particles for = 200 GeV Au+Au and Cu+Cu Collisions S.J. Sanders (U. Kansas)
2nd International Workshop on the critical point and the onset of deconfinement Charged mesons in Au+Au interactions at 62.4 AGeV Ionut Arsene for the.
Rapidity Dependence of Charged Hadron Yields in Central Au+Au Collisions at 200 GeV Djamel Ouerdane Niels Bohr Institute for the BRAHMS Collaboration Quark.
BRAH Broad RAnge Hadron MS Magnetic Spectrometers 2.3° 30° 90° 30° The BRAHMS HI and Spin Programs S. J. Sanders U. Kansas.
Charged-particle pseudorapidity densities in d-Au collisions at  s=200GeV/A Hironori Ito Brookhaven National Laboratory BRAHMS Collaboration.
Results from the BRAHMS Experiment at RHIC F.Rami* for the BRAHMS Collaboration * Institut de Recherches Subatomiques and Université Louis Pasteur, Strasbourg.
Results from First RHIC run QM 2001 January 15, 2001 Results from First RHIC run QM 2001 January 15, 2001 F.Videbœk Physics Department Brookhaven National.
Strangeness production in Au+Au collisions at RHIC Jens Ivar Jørdre University of Bergen, Norway.
Strangeness Measurements in BRAHMS J.H. Lee Physics Department Brookhaven National Laboratory For the BRAHMS Collaboration SQM2003 Mar  Results.
1 Results from the BRAHMS experiment at RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen for the BRAHMS collaboration Experimental setup Stopping.
Rapidity Dependence of Pion Elliptic Flow Hironori Ito 1 Erik Johnson 2 Steve Sanders 2 BRAHMS Collaboration 1 Brookhaven National Laboratory 2 University.
Recent Results from BRAHMS from y=0 to y=3 I. G. Bearden Niels Bohr Institute University of Copenhagen, Denmark Quark Matter 2002, July 18-24, Nantes,
HIGHLIGHTS BRAHMS I.G. Bearden, Niels Bohr Institute QM'06 Shanghai 2 Outline BRAHMS Intermediate PT Soft physics.
BRAHMS Scanning the phases of QCD I. Arsene, I.G. Bearden, D. Beavis, C. Besliu, B. Budick, H. Bøggild, C. Chasman, C. H. Christensen, P. Christiansen,
Phases of matter in the BRAHMS experiment Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University for the BRAHMS Collaboration.
Jaipur, India Feb title Recent Results from BRAHMS R. Debbe for the BRAHMS Collaboration Physics Dept. Brookhaven National Laboratory.
Lecture 07: particle production in AA collisions
April 29, 2001APS-Wash-DC, Jens Jørgen Gaardhøje, Niels Bohr Institute1 nReaction features in 65 AGeV Au + 65AGeV Au nElectromagnetic dissociation ndN(ch)/d.
DNP2004 Oct Hyatt Regency Chicago IL Ramiro Debbe for the BRAHMS collaboration Physics Department Forward Identified Particle Production in d+Au.
Recent Results from BRAHMS at RHIC J.H. Lee Physics Department Brookhaven National Laboratory For the BRAHMS Collaboration Current and Future Directions.
Itzhak Tserruya Initial Conditions at RHIC: an Experimental Perspective RHIC-INT Workshop LBNL, May31 – June 2, 2001 Itzhak Tserruya Weizmann.
Truls Martin Larsen, BRAHMS Collaboration, QM Aug 1 Nuclear Modification factors in Cu-Cu and Au-Au collisions Truls Martin Larsen.
Rapidity dependence of charged particle yields with BRAHMS for Au+Au at 200 GeV Djamel Ouerdane for the BRAHMS collaboration Quark Matter 2002 Nantes,
Zbigniew Majka M.Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland Review of early results from BRAHMS experiment.
Kaon Production in Central Au+Au Collisions at 200 and 63 GeV Djamel Ouerdane Niels Bohr Institute for the BRAHMS Collaboration Strange Quark Matter 2004.
BRAHMS Heavy Ion Results and Perspectives Erik Bjorn Johnson RHIC & AGS Users Meeting June 8, 2006.
Eun-Joo Kim ( Chonbuk Nat. Univ.) Hongyan Yang ( Univ. of Bergen ) For the Collaboration N MF Nuclear Modification Factors at BRAHMS.
BRAHMS 18. JUNI 2003 BNL High Pt Colloquium I.G.Bearden, Niels Bohr Institute 1 BRAHMS High P T Measurements with BRAHMS I.G. Bearden, Niels Bohr Institute.
8 th February 2002Michael Murray, Texas A&M, CMS Heavy Ion Mtg at MIT Brahms: Forward Physics at RHIC T1 MTPC1 T2 MTPC2 MRS: 90 deg 6.5 msr FS: 6 deg 0.8.
HAW Sep Maui, Hawaii Ramiro Debbe BNL Physics Department The excess of positive charged particles measured at forward rapidities in d+Au.
BRAHMS Zhongbao Yin Department of Physics, University of Bergen for the BRAHMS Collaboration High p T Spectra of Protons and Charged Pions in Au+Au and.
Baryon-to-meson production in a wide range of baryo-chemical potential at RHIC Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University.
BRAHMS Y RHIC: snn=130 GeV, and snn=200 GeV
Radoslaw Karabowicz for the BRAHMS Collaboration
Eun-Joo Kim University of Kansas For the BRAHMS collaboration
Soft Physics at Forward Rapidity
Identified hadron production in d+Au and p+p collisions at RHIC
Recent Results from the BRAHMS
Energy dependence of stopping
BRAHMS overview Paweł Staszel,
Forward Physics with BRAHMS at RHIC University of Bergen & CERN
Presentation transcript:

1 Results from the BRAHMS experiment at RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen for the BRAHMS collaboration Experimental setup Stopping Particle production –Charged particle pseudo-rapidity distribution –Rapidity dependence of ratios of identified particles

2 BRAHMS collaboration I.G. Bearden 7, D. Beavis 1, C. Besliu 10, Y. Blyakhman 6, J. Bondorf 7, J.Brzychczyk 4, B. Budick 6, H. Bøggild 7, C. Chasman 1, C. H. Christensen 7, P. Christiansen 7, J.Cibor 4, R.Debbe 1, J. J. Gaardhøje 7, K. Grotowski 4, K. Hagel 8, O. Hansen 7, H. Heiselberg 7, A. Holm 7, A.K. Holme 12, H. Ito 11, E. Jacobsen 7, A. Jipa 10, J. I. Jordre 10, F. Jundt 2, C. E. Jørgensen 7, T. Keutgen 9, E. J. Kim 5, T. Kozik 3, T.M.Larsen 12, J. H. Lee 1, Y. K.Lee 5, G. Løvhøjden 2, Z. Majka 3, A. Makeev 8, B. McBreen 1, M. Murray 8, J. Natowitz 8, B.S.Nielsen 7, K. Olchanski 1, D. Ouerdane 7, R.Planeta 4, F. Rami 2, D. Roehrich 9, B. H. Samset 12, S. J. Sanders 11, I. S. Sgura 10, R.A.Sheetz 1, Z.Sosin 3, P. Staszel 7, T.S. Tveter 12, F.Videbæk 1, R. Wada 8 and A.Wieloch 3. 1 Brookhaven National Laboratory, USA 2 IReS and Université Louis Pasteur, Strasbourg, France 3 Jagiellonian University, Cracow, Poland 4 Institute of Nuclear Physics, Cracow, Poland 5 Johns Hopkins University, Baltimore, USA 6 New York University, USA 7 Niels Bohr Institute, University of Copenhagen, Denmark 8 Texas A&M University, College Station, USA 9 University of Bergen, Norway 10 University of Bucharest, Romania 11 University of Kansas, Lawrence, USA 12 University of Oslo, Norway

3 RHIC physics August 2000 & August :00 o’clock 4:00 o’clock 6:00 o’clock 8:00 o’clock 10:00 o’clock STAR PHENIX RHIC AGS LINAC BOOSTER TANDEMS 9 GeV/u Q = MeV/u Q = +32 HEP/NP  g-2 U-line BAF (NASA) BRAHMS: L peak = 3.3  cm -2 s -1 L ave = 1.7  cm -2 s -1 Rcoll= 350 Hz PHOBOS 6  b -1 2 wks August 2000 and 2001

4 BRAHMS detector –Centrality detectors Tiles Silicon strips Beam-Beam counters Zero-degree calorimeters –Two movable spectrometers Midrapidity spectrometer Forward Spectrometer Broad RAnge Hadron Magnetic Spectrometer

5 Global detectors: SiMA, TMA, BB, ZDC SiMA (-2.0<  <2.0) TMA (-2.2<  <2.2) Beam-Beam (3 < |  | < 4) 97%  (geom)

6 Centrality determination Multiplicity measurement –Si strips + tiles Corrected for vertex position dependence 1m

7 Forward & midrapidity spectrometers FS: 2 TPC, 2 TOF, C1-threshold, 3 Drift Ch. Mod., RICH, 4 Dipoles deg.  = MRS: 2 TPC, 1 Dipole, 1TOF deg.  =

8 First BRAHMS collision at 100 AGeV+100AGeV T1 MTPC1 T2 MTPC2 MRS: 90 deg 6.5 msr FS: 6 deg 0.8 msr Dipole Magnets

9 Spectrometer acceptance August 2000 & 2001 FFS BFS

10 TPC tracking and vertex reconstruction MTPC1 z y

11 Hadron identification MRS (90, 40 deg) m 2 =p 2 ( t 2 / L 2 -1) p-bar  KK p  =0  =3 p K  0 p, pbar K±  

12 Hadron identification FS (4 deg & 200AGeV) (1) TOF (H1) and Cherenkov (C1) veto in FFS C1,H1,T2

13 Hadron identification FS (4 deg & 200AGeV) (2) K-K- p-p- K+K+ p C1 Cerenkov pion threshold ~2.7GeV/c C1 segmented in cm x 6.35 cm pixels. Mean # of tracks/event ~1.4 TOF resolution roughly 25% better than in 2000 TOF K/p in FFS up to 5GeV/c TOF pi/K in FFS to 3GeV/c

14 Hadron identification FS (200AGeV) (3) Full PID in FS Ring Imaging Cerenkov Detector (RICH) Secondary ToF counter (H2) PID up to 25 GeV/c

15 Proton rapidity distribution AGS energies –Central collisions –Energy dependence B. Back et al., E917 Collaboration, Phys. Rev. Lett. 86 (2001) 1970

16 Stopping Rapidity loss –energy dependence F. Videbæk, nucl-ex/

17 Net proton rapidity distribution SPS central (6%) Pb+Pb, 158 GeV/nucl. NA49 RHIC central (6%) Au+Au,  s NN = 130 GeV BRAHMS, STAR G. Cooper et al. (NA49 Collaboration), Nucl. Phys. A661 (1999) 362c-365c C. Adler et al. (STAR), subm. Phys. Rev. Lett.; F. Videbæk (BRAHMS), QM01

18 Net proton rapidity distribution – model predictions FRITIOF 7.02HIJING BRAHMS (central) preliminary

19 Antiproton/proton ratio – rapidity dependence SPS central (14%) Pb+Pb, 158 GeV/nucl. NA49 RHIC central (40%) Au+Au,  s NN = 130 GeV BRAHMS G. Cooper et al. (NA49), Nucl. Phys. A661 (1999) 362c; G. Veres et al. (NA49), Nucl. Phys. A661 (1999) 383c I.G. Bearden et al., (BRAHMS), Phys. Rev. Lett. 87 (2001)

20 Antiproton/proton ratio – centrality dependence SPS Pb+Pb, 158 GeV/nucl. NA49 RHIC Au+Au,  s NN = 130 GeV BRAHMS G. Cooper et al. (NA49), Nucl. Phys. A661 (1999) 362c; G. Veres et al. (NA49), Nucl. Phys. A661 (1999) 383c I.G. Bearden et al., (BRAHMS), Phys. Rev. Lett. 87 (2001)

21 Antiproton/proton ratio – energy dependence Energy systematics RHIC, Au+Au  s NN = 130 GeV  s NN = 200 GeV RHIC, central Au+Au, BRAHMS J.J. Gaardhøje, (BRAHMS), CIPPQG (2001)

22 Particle production dN ch /d  s nn = 130 GeV Charged particle pseudorapidity distribution –SiMA, TMA, BB, TPC –Consistency between 4 independent detector systems Central 0-5% –  N(ch)d  = 4050 ± 300 –dN(ch)/d  (  =0) = 553  1  36 –FWHM of distribution  = 7.6  % 10-20% 20-30% 30-40% 40-50% 5-10% 600 BRAHMS subm. Phys. Lett. B (2001 ) 65 AGeV + 65 AGeV

23 Number of Participants From HIJING dN/d  ~ 3.2 per participant nucl. pair at  =0 for central (0-5%); =346 Enhancement of particle production for central collisions at mid-rapidity At high rapidities (  >3) particle production scales with N part

24 dN ch /d  vs. participant nucleon  s nn =130 GeV SPS

25 dN ch /d  and model predictions  s nn =130 GeV C. E. Jørgensen, Thesis NBI 2001 FRITIOF HIJING

26 Particle production dN ch /d  s nn = 200 GeV Charged particle pseudorapidity distribution –SiMA, BB Central 0-6% –  N(ch)d  = 5100 ± 300 –dN(ch)/d  (  =0) = 610  50 –FWHM of distribution  = 7.9  AGeV AGeV

27 dN ch /d  vs. participant nucleon  s nn =200 GeV Soft-Hard: dN/d  =(1-X) n pp /2 + X n pp with =1049, =339, npp=2.43 =>dN/d  =668 (with X=0.9) High Density QCD- saturation: dN/dy = f( Npart, Q s 2,,  QCD,  s,y) with =0.3 from HERA data => dN/d  =620 (using dN/d  =549 at  s=130 GeV) Kharzeev and Levin (nucl-th/ )

28 dN ch /d  vs. participant nucleon pairs - energy dependence 130 AGeV 4000 charged part. observed Nch  23.5 pr. part. pair cf. Nch  17 in p+p at  s=130GeV 35-40% increase over p+p Syst ? BRAHMS 200 AGeV 5100 charged part. observed Nch  30 pr. part. pair cf. Nch  20 in p+p at  s=200GeV 50% increase over p+p

29 Rapidity dependence of ratios of identified particles - how consistent are the  s nn = 130GeV?

30 Rapidity dependence of K  /K +  s nn = 130GeV BRAHMS preliminary BRAHMS preliminary

31 Transverse momentum dependence of ratios of identified particles (1)  s nn = 130GeV Ratios at y  % central No observed dependence on centrality No strong pt-dependence N(   )/N(  + ) = 0.99  0.02 N(K  )/N(K + ) = 0.90  0.06

32 Transverse momentum dependence of ratios of identified particles (2)  s nn = 130GeV Ratios at y  % central N(K)/N(  ) increases with p t (0.16 – 0.6) N(p)/N(  ) increases with p t ; pbar(p) >      for p t > 2 GeV/c

33 Ratios of identified particles and jet quenching Kaon/pion ratio as probes of jet quenching and initial density in AA collisions P. Levai, SQM2001 Anomalous antiproton to negative pion ratio as revealed by jet quenching I. Vitev, M. Gyulassy, hep-ph/

34 Thermal models at RHIC F. Becattini, J. Cleymans, A. Keranen, E. Suhonen, K. Redlich, Phys.Rev. C64 (2001) BRAHMS Preliminary y  2 y  0

35 Summary: Au+Au  s nn =130 & 200 GeV RESULTS: Nch (0-5%)  4050 dN/d  (y=0)  553;  FWHM  7.6 dN/d  (y=0)  3.14 pr. part. pair Pbar/p = 0.64 ± 0.05 ± 0.06 (y  0) = 0.66 ± 0.05 ± 0.06 (y  0.7) = 0.41 ± 0.05 ± 0.06 (y  2)   /  + = 0.99  0.02 (y  0) K  /K + = 0.90  0.06 (y  0) = 0.83  0.1 (y  2.5) No (weak) pt and centrality dependence RESULTS: Nch (0-5%)  5100 dN/d  (y=0)  610.  FWHM  7.9 dN/d  (y=0)  3.6 pr. part. pair Central mult increases by 14% Pbar/p  0.48 ± 0.08 (y  2)   /  + = 0.99  0.01 (y  3) Large y and pt coverage to come