The MAGIC Telescope MAGIC

Slides:



Advertisements
Similar presentations
DPG Tagung, March 2003Nadia Tonello, MPI für Physik (Werner- Heisenberg-Institut), München 1 Observations of 1ES with the HEGRA CT1 Cherenkov Telescope.
Advertisements

All-aluminum mirrors for the MAGIC Cherenkov Telescope
The MAGIC telescope and the GLAST satellite La Palma, Roque de los Muchacos (28.8° latitude ° longitude, 2225 m asl) INAUGURATION: 10/10/2003 LAT.
OBSERVATIONS OF AGNs USING PACT (Pachmarhi Array of Cherenkov Telescopes) Debanjan Bose (On behalf of PACT collaboration) “The Multi-Messenger Approach.
FDWAVE : USING THE FD TELESCOPES TO DETECT THE MICRO WAVE RADIATION PRODUCED BY ATMOSPHERIC SHOWERS Simulation C. Di Giulio, for FDWAVE Chicago, October.
5th Science AGILE Workshop, June Observations of pulsars with MAGIC Marcos López (INFN/Padova) on behalf of the MAGIC collaboration.
Cut off more slowly ~ 50GeV Thompson astro-ph/ Credit: A.K. Harding (NASA/GSFC) Our first target: Crab pulsar/nebula The standard candle for gamma-ray.
Observations of the AGN 1ES with the MAGIC telescope The MAGIC Telescope 1ES Results from the observations Conclusion The MAGIC Telescope.
MAGIC TeV blazars and Extragalactic Background Light Daniel Mazin on behalf of the MAGIC collaboration Max-Planck-Institut für Physik, Munich.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Dr. Harald Kornmayer A distributed, Grid-based analysis system for the MAGIC telescope, CHEP 2004, Interlaken1 H. Kornmayer, IWR, Forschungszentrum Karlsruhe.
The MAGIC Telescope Razmick Mirzoyan Max-Planck-Institute for Physics Max-Planck-Institute for Physics Munich, Germany EPS (July 17 th -23 rd 2003) Aachen,
Measuring the GRH and the cosmological parameters with MAGIC Oscar Blanch IFAE, Universitat Autònoma de Barcelona ISCRA 2002 June 2002.
Selected topics & results
F. Goebel, MPI München, 4 May 2006, Berlin Florian Goebel Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) München for the MAGIC collaboration.
Theoretical part Technical part Experimental part Status and latest results of the MAGIC telescope Juan Cortina The Čerenkov technique The MAGIC Telescope.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
Seminari IEEC - 15-XII-04Oscar Blanch Bigas Cosmology with the New Generation of Cherenkov Telescopes Oscar Blanch Bigas IFAE, UAB Seminari IEEC 15-XII-04.
Nebular Astrophysics.
17 November 2003EUSO meeting: R. Mirzoyan The MAGIC Telescope Project Razmick Mirzoyan Max-Planck-Institute for Physics Munich, Germany EUSO meeting.
Incontri di Fisica delle Alte Energie IFAE 2006 Pavia Vincenzo Vitale Recent Results in Gamma Ray Astronomy with IACTs.
Wilga 2007 π of the Sky Full π system and simulation Janusz Użycki Faculty of Physics Warsaw University of Technology.
Observations of 3C 279 with the MAGIC telescope M.Teshima 1, E.Prandini 2, M.Errando, D. Kranich 4, P.Majumdar 1, M.Mariotti 2 and V.Scalzotto 2 for the.
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
1 Max-Planck-Institut fuer Physik, Muenchen, Germany, 2 Humboldt-Universituet Berlin, Germany, 3 Univ. Complutense, Madrid, Spain, 4 ETH, Zurich, Switzerland,
The Second International Workshop on Ultra-high-energy cosmic rays and their sources INR, Moscow, April 14-16, 2005 from Extreme Universe Space Observatory.
MAGIC observations of Galactic sources
F. Goebel, MPI München, 14. June 2004, EGAAP, CERN Florian Goebel Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) München for the MAGIC collaboration.
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
Development of Ideas in Ground-based Gamma-ray Astronomy, Status of Field and Scientific Expectations from HESS, VERITAS, MAGIC and CANGAROO Trevor C.
7 March 2008Nicola Galante, DPG - Freiburg1 Observation of GRBs with the MAGIC Telescope Nicola Galante (MPI für Physik - München) for the MAGIC Collaboration.
May 4th 2006R.Mirzoyan: CTA meeting, Berlin The MAGIC Project: Performance of the 1st telescope Razmick Mirzoyan On behalf of the MAGIC Collaboration Max-Planck-Institute.
First results of Galactic observations with MAGIC Javier Rico Institut de Física d’Altes Energies Barcelona, Spain XII International Workshop on “Neutrino.
Analysis chain for MAGIC Telescope data Daniel Mazin and Nadia Tonello Max-Planck-Institut für Physik München D.Mazin, N.Tonello MPI for Physics, Munich.
CTA The next generation ultimate gamma ray observatory M. Teshima Max-Planck-Institute for Physics.
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut) for MAGIC collaboration MAGIC.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
The islands method in the image analysis of atmospheric Cherenkov Telescopes data Nadia Tonello and Keiichi Mase Max-Planck-Institut für Physik München.
Search for emission from Gamma Ray Bursts with the ARGO-YBJ detector Tristano Di Girolamo Universita` “Federico II” and INFN, Napoli, Italy ECRS, September.
Extending the Sensitivity Of Air-Cerenkov Telescopes Steve Biller, Oxford University (de la Calle & Biller – astro-ph/ )
Dr. Karsten Berger Instituto de Astrofisica de Canarias, La Laguna, Spain.
Introduction Data analyzed Analysis method Preliminary results
Outline Cosmic Rays and Super-Nova Remnants
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Tobias Jogler Max – Planck Institute für Physik MAGIC Observations of the HMXB LS I in VHE gamma rays Tobias Jogler on behalf.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Rencontres de Moriond Detection of the Crab pulsar with MAGIC: First pulsar detected > 25 GeV Marcos López (INFN/Padova) T. Schweizer, N.Otte, M.Rissi,
05/02/031 Next Generation Ground- based  -ray Telescopes Frank Krennrich April,
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Abstract Since the beginning of its operation in April 2005, the MAGIC telescope was able to observe ten different GRB events since their early emission.
Status of the MAGIC Telescope Project Presented by Razmick Mirzoyan On behalf of the MAGIC Collaboration Max-Planck-Institute for Physics (Werner-Heisenberg-Institute)
Markarian 421 with MAGIC telescope Daniel Mazin for the MAGIC Collaboration Max-Planck-Institut für Physik, München
MAGIC Telescopes - Status and Results 2009/ Isabel Braun Institute for Particle Physics, ETH Zürich for the MAGIC collaboration CHIPP Plenary Meeting.
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
Results From VERITAS K. Byrum High Energy Physics (HEP) Division Argonne National Laboratory Indirect and Direct Detection of Dark Matter 6-12 Feb 2011,
Fermi Gamma-ray Space Telescope Searches for Dark Matter Signals Workshop for Science Writers Introduction S. Ritz UCSC Physics Dept. and SCIPP On behalf.
Bulgarian Participation in the MAGIC Experiment H. Vankov, Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences, ECFA Meeting,
The end of the electromagnetic spectrum
Tobias Jogler Max – Planck Institut für Physik The MAGIC view of our Galaxy Tobias Jogler for the MAGIC Collaboration.
CTA-LST Large Size Telescope M. Teshima for the CTA Consortium Institute for Cosmic Ray Research, University of Tokyo Max-Planck-Institute for Physics.
Tobias Jogler Max-Planck Institut für Physik IMPRS YSW Ringberg 2007 VHE emission from binary systems Outline Binary systems Microquasar Pulsar binaries.
Igor Oya Vallejo UCM 1 MAGIC observations of Active Galactic Nuclei Igor Oya Vallejo UCM Madrid On behalf of MAGIC collaboration 1 VIII Reunión Científica.
Daniel Mazin and Nadia Tonello Max-Planck-Institut für Physik München
MAGIC M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut)
Observation of Pulsars and Plerions with MAGIC
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut)
Presentation transcript:

The MAGIC Telescope MAGIC International School of Cosmic Ray Astrophysics Erice, 2-13. July 2004 MAGIC - talks in this session - Overview - F.Goebel Selected physics topics Pulsars - R. de los Reyes AGNs - R. Firpo Microquasars - N. Sidro GRBs - S. Mizobuchi First Analysis Analysis method - D. Mazin First results - E. Aliu Florian Goebel Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) München for the MAGIC collaboration Parlero’ telescopio MAGIC come esempio di “ground based experiment” per la gamma-astronomia. Da quando fu osservata la prima sorgente nel 1989 (wipple) i Ttelescopi cherenkov hanno raffinato tecnologie e metodologie. Ora gli IACT sono un maturo strumento di misura e osservazione per l’astronomia gamma delle alte energie Siamo giunti alla realizzazione di telescopi cherenkov di seconda generazione. Magic tra questi sara’ quello con la piu’ bassa soglia in energia Esistono altri progetti di esperimento “ground based” non imaging cherenkov telescopes come solar array (celeste) o rivelatori di particelle in alta quota (ARGO) ma, almenno finora, non hanno dimostrato di avere un ottimale strategia di reiezione del fondo. F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

Outline - MAGIC overview The MAGIC Telescope The aim for low energy threshold (the physics case) The key elements of the MAGIC telescope Outlook Nella prima parte del talk illustrero la tecnica IACT riassumendo le pricipali peculiuarità Di seguito’ parlero del telescopio MAGIC, della collaborazione e dello stato di avanzamento della realizzazione dello strumento Passero’ dunque ad illustrare gli obiettivi sceintifici di MAGIC Infine le conclusioni F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

The MAGIC Collaboration Major Atmospheric Gamma-Ray Imaging Cherenkov Telescope Barcelona IFAE, Barcelona UAB, Crimean Observatory, U.C. Davis, U. Lodz, UCM Madrid, INR Moscow, MPI München, INFN/ U. Padua, INFN/ U. Siena, HU. Berlin, Tuorla Observatory, Yerevan Phys. Institute, INFN/ U. Udine, U. Würzburg, ETH Zürich International collaboration of ~ 100 physicists 16 institutes 11 countries Il mio talk vertirà sul telescopio magic come esempio di “ground based sxperiment” di seconda generazione F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice The MAGIC telescope Largest Imaging Air Cherenkov Telescope (17 m mirror dish) Located on Canary Island La Palma (@ 2200 m asl) Lowest energy threshold ever obtained with a Cherenkov telescope Aim: detect –ray sources in the unexplored energy range: 30 (10)-> 300 GeV F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

Imaging Air Cherenkov Telescopes Gamma ray Cherenkov light Image of particle shower in telescope camera ~ 10 km Particle shower ~ 1o Cherenkov light ~ 120 m F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice Standard Analysis gamma shower Shower reconstruction and background rejection based on image shape analysis Hillas parameters: Length, width, distance, alpha raw image cleaned image hadron shower (background) F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

First source observations Mkn 421 (AGN) February 2004 (in flaring state) Source position Alpha distribution 1200 excess events 800 background events preliminary 100 minutes observation => Significance: 23 sigma F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

The unexplored spectrum gap Satellites give nice crowded picture of –ray energies up to 10 GeV. Effective area < 1 m2 Ground-based experiments show very few sources with energies > ~300 GeV. Effective area > 104 m2 Something must happen in the gap, and it’s interesting enough to have an instrument to measure in it. Also to confirm some of the EGRET catalogue sources at higher energies. And also to cross check the energy calibration and measurements between satellites and ground based experiments. Close gap with MAGIC expect discovery of many new sources F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

The MAGIC Physics Program Cosmological g-Ray Horizon AGNs Pulsars Origin of Cosmic Rays Tests of Quantum Gravity effects SNRs Cold Dark Matter GRBs F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

Absorption of extragalactic  - rays -rays travelling cosmological distances interact with the Extragalactic Background Light (EBL) For IACTs energies (10 GeV-10 TeV), the interaction takes place with infrared ’s (0.01 eV-3 eV, 100 m-0.5 m). MAGIC EBL Attenuated flux is function of g-energy and source distance (redshift z). F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice Gamma Ray Horizon The EBL absorption limits the maximum observable distance of g-ray sources. Gamma Ray Horizon A lower energy thresholds allows a deeper look into the universe MAGIC phase I MAGIC phase II F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

Measurement of the IR background IR background light is result of history of the universe (Star formation, Radiation of stars, Absorption and reemission by ISM) Mkn 501 (z=0.034) By measuring AGN spectra up to z=1, MAGIC can help determining the IR background Absorption leads to cutoff in AGN spectrum Need several sources (@ similar z) to disentangle source intrinsic effects. F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice Pulsars 7 -ray pulsars seen by EGRET (E < 10 GeV) Only upper limits from present IACTs for pulsed emission (spectral cut-off) Where do g-rays come from? Outer gap or polar cap? 30 – 100 GeV decisive energy range F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice Gamma Ray Bursts Origin and acceleration mechanism not yet fully understood. Do GRBs have E > 10 GeV counterparts? GRBs are short (10 – 100 sec) => Need fast repositioning after GRB alert If GRB origin very far => High energy -rays will be absorbed by EBL => Need low energy threshold MAGIC can observe 1-2 GRB/year F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

Search for Dark Matter Particles Neutralino (lightest SUSY particle) is attractive Cold Dark Matter candidate g-flux from c annihilations: CDM density: g-ray flux ~ r2 => search for CDM clumps observe: galactic center (high diffuse g background), dwarf spheroidal and nearby galaxies, globular clusters g-line Eg = mc g-line Eg = mc- mZ2/4 mc g continuum Particle physics: g-continuum dominates g-lines suppressed F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

Key Elements of the MAGIC Telescope 17 m diameter reflecting surface (240 m2 ) Light weight Carbon fiber Structure for fast repositioning Active mirror control Diamond milled aluminum mirrors 3.5o FOV camera 577 high QE PMTs Analog signal transport via optical fibers 2-level trigger system & 300 MHz FADC system IPE CE NET F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice The Reflector overall reflector: parabolic (f/1), isochronous, maintain time structure of Cherenkov light flashes (~2 nsec) better bkg light rejection ~950 spherical mirror elements 49.5 x 49.5 cm2 All-aluminum, quartz coated, diamond milled, internal heating >85% reflectivity (300-650nm) 4 mirrors mounted on 1 panel mirror spot (after pre-alignment): d90%~1cm (pixelinner d=3cm) F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice The Frame carbon fiber structure lightweight dish & mirrors: 20 tons telescope: 65 tons Stiff allows fast slewing time (180º in both axes in 22s) Fast follow-up of a Gamma Ray Burst F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice

The Active Mirror Control PC controlled motors allow remote refocusing of all mirror panels anytime Correct for small deformations of telescope structure Panel orientation measured with laser beam Achievable Point Spread Function: R80 ~ 15mm  0.05°  0.9 mrad F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice The Camera Matrix of 577 PMTs Field of View: 3.50 Inner part: 0.10 pixel Outer part: 0.20 pixel Plate of Winston cones  Active camera area 98% F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice High QE PMTs Pixels: 6 stage PMTs ET 9116A (1”) ET 9117A (1,5”) Quantum Efficiency increased up to 30 % with diffuse scattering coating extended UV sensitivity by with wavelength shifter coating 239 m2 -> 284 m2 !!! F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice The Signal Processing Analog signals transmitted over 162 m long optical fiber: Signal still short Cable weight, noise immune. Max trig rate ~ 1 kHz data rate => 20 MB/s => 800 GB/night 2 level trigger Fast (5 nsec) next neighbor logic Slower (150 nsec) topological pattern recognition Stretch pulse to 6 nsec Split to high & low gain (dynamic range > 1000) Digitize with 300 MSamples/s 8 bit FlashADCs (testing 2GS/s) F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice M. Mariotti Padova 30-01-2003

Future of MAGIC observatory MAGIC I Second MAGIC type telescope under construction (more observation time, background rejection & better event reconstruction in coincidence mode) Plans for 34 m telescope for gamma astronomy down to E = 5 GeV ECO1000 F. Goebel, MPI München, 2-13 July 2004, ISCRA, Erice