Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of.

Slides:



Advertisements
Similar presentations
Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Advertisements

Quantum Cryptography Post Tenebras Lux!
QCRYPT 2011, Zurich, September 2011 Lluis Masanes 1, Stefano Pironio 2 and Antonio Acín 1,3 1 ICFO-Institut de Ciencies Fotoniques, Barcelona 2 Université.
Entanglement in fermionic systems M.C. Bañuls, J.I. Cirac, M.M. Wolf.
I NFORMATION CAUSALITY AND ITS TESTS FOR QUANTUM COMMUNICATIONS I- Ching Yu Host : Prof. Chi-Yee Cheung Collaborators: Prof. Feng-Li Lin (NTNU) Prof. Li-Yi.
Fixing the lower limit of uncertainty in the presence of quantum memory Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata Collaborators:
Detecting Genuine Multi-qubit Entanglement with Two Local Measurement Settings Géza Tóth (MPQ) Otfried Gühne (Innsbruck) Quantum Optics II, Cozumel, Dec.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Quantum Cryptography ( EECS 598 Presentation) by Amit Marathe.
Short course on quantum computing Andris Ambainis University of Latvia.
J. Eisert University of Potsdam, Germany Entanglement and transfer of quantum information Cambridge, September 2004 Optimizing linear optics quantum gates.
Classical capacities of bidirectional channels Charles Bennett, IBM Aram Harrow, MIT/IBM, Debbie Leung, MSRI/IBM John Smolin,
Quantum Cryptography Qingqing Yuan. Outline No-Cloning Theorem BB84 Cryptography Protocol Quantum Digital Signature.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Quantum Key Distribution Yet another method of generating a key.
Gate robustness: How much noise will ruin a quantum gate? Aram Harrow and Michael Nielsen, quant-ph/0212???
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Toyohiro Tsurumaru (Mitsubishi Electric Corporation) Masahito Hayashi (Graduate School of Information Sciences, Tohoku University / CQT National University.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Quantum Algorithms I Andrew Chi-Chih Yao Tsinghua University & Chinese U. of Hong Kong.
BB84 Quantum Key Distribution 1.Alice chooses (4+  )n random bitstrings a and b, 2.Alice encodes each bit a i as {|0>,|1>} if b i =0 and as {|+>,|->}
Quantum Cryptography Prafulla Basavaraja CS 265 – Spring 2005.
Lo-Chau Quantum Key Distribution 1.Alice creates 2n EPR pairs in state each in state |  00 >, and picks a random 2n bitstring b, 2.Alice randomly selects.
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
Pablo A. Parrilo ETH Zürich Semialgebraic Relaxations and Semidefinite Programs Pablo A. Parrilo ETH Zürich control.ee.ethz.ch/~parrilo.
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
ENTROPIC CHARACTERISTICS OF QUANTUM CHANNELS AND THE ADDITIVITY PROBLEM A. S. Holevo Steklov Mathematical Institute, Moscow.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
A Few Simple Applications to Cryptography Louis Salvail BRICS, Aarhus University.
Manipulating Continuous Variable Photonic Entanglement Martin Plenio Imperial College London Institute for Mathematical Sciences & Department of Physics.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Security of practical quantum cryptography with heralded single photon sources Mikołaj Lasota 1, Rafał Demkowicz-Dobrzański 2, Konrad Banaszek 2 1 Nicolaus.
Test for entanglement: realignment criterion, entanglement witness and positive maps Kai Chen † CQIQC, Toronto, July 2004 † Kai Chen is now a postdoctoral.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Experimental generation and characterisation of private states Paweł Horodecki Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Device-independent security in quantum key distribution Lluis Masanes ICFO-The Institute of Photonic Sciences arXiv:
Quantum Key Distribution Chances and Restrictions Norbert Lütkenhaus Emmy Noether Research Group Institut für Theoretische Physik I Universität Erlangen-Nürnberg.
Introduction to Quantum Key Distribution
CS555Topic 251 Cryptography CS 555 Topic 25: Quantum Crpytography.
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Analytical Approach to Optimal Discrimination with Unambiguous Measurements University of Tabriz M. Rezaei Karamaty Academic member of Tabriz University.
Quantum Cryptography Slides based in part on “A talk on quantum cryptography or how Alice outwits Eve,” by Samuel Lomonaco Jr. and “Quantum Computing”
The Classically Enhanced Father Protocol
Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques.
Nawaf M Albadia
1 Security of Quantum Key Distribution with Imperfect Devices Hoi-Kwong Lo Dept. of Electrical & Comp. Engineering (ECE); & Dept. of Physics University.
Quantum Cryptography Christian Schaffner Research Center for Quantum Software Institute for Logic, Language and Computation (ILLC) University of Amsterdam.
Lattice-based cryptography and quantum Oded Regev Tel-Aviv University.
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
When are Correlations Quantum?: Verification and Quantification of Entanglement with simple measurements Imperial College London Martin B Plenio Koenraad.
Quantum Cryptography Christian Schaffner Research Center for Quantum Software Institute for Logic, Language and Computation (ILLC) University of Amsterdam.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Quantum Optics II – Cozumel December 2004 Quantum key distribution with polarized coherent states Quantum Optics Group Instituto de Física “Gleb Wataghin”
Quantum Cryptography Antonio Acín
Quantum Cryptography Christian Schaffner Research Center for Quantum Software Institute for Logic, Language and Computation (ILLC) University of Amsterdam.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Distillation and determination of unknown two-qubit entanglement: Construction of optimal witness operator Heung-Sun Sim Physics, KAIST ESF conference:
Quantum Optics VI Krynica Unconditional quantum cloning of coherent states with linear optics Gerd Leuchs, Vincent Josse, Ulrik L. Andersen Institut.
Quantum Theory of the Coherently Pumped Micromaser István Németh and János Bergou University of West Hungary Department of Physics CEWQO 2008 Belgrade,
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Secret keys and random numbers from quantum non locality Serge Massar.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki * *Perimeter Institute for.
Quantum Key Distribution
Quantum Cryptography Scott Roberts CSE /01/2001.
Witness for Teleportation
Sequential sharing of nonlocal correlations
Presentation transcript:

Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of Toronto 2.Institute for Quantum Computing, University of Waterloo 3.Max-Plank-Forschungsgruppe, Institut für Optik, Information und Photonik, Universität Erlangen-Nürnberg On One-way and Two-way Classical Post- Processing Quantum Key Distribution

Quantum Key Distribution (QKD) Precondition for secure QKD (Two-way & One-way) Witness Operators (Two-way & One-way QKD) Semidefinite Programming Evaluation Overview

Quantum Key Distribution (QKD) Phase I: Physical Set-Up Mathematical Model AiAi BjBj Pr(A i,B j )=Tr(A i B j )  AB  AB =  i Pr(A i ) 1/2  A i  A i  with  AB =  AB  AB BjBj  A i  Pr(A i,B j )=Pr(A i )Tr(B j )  A i  A i  Reduced density matrix of Alice fixed Add:  A = Tr B (  AB ) A i 1 

Quantum Key Distribution (QKD) Phase II: Classical Communication Protocol Pr(A i,B j ) Secret key Advantage distillation (e.g. announcement of bases in BB84 protocol) Error Correction (  Alice and Bob share the same key) Privacy Amplification (  generates secret key shared by Alice and Bob) Authenticated Classical Channel Two-way

Quantum Key Distribution (QKD) Phase II: Classical Communication Protocol Pr(A i,B j ) Secret key Advantage distillation (e.g. announcement of bases in BB84 protocol) Error Correction (  Alice and Bob share the same key) Privacy Amplification (  generates secret key shared by Alice and Bob) Authenticated Classical Channel One-way (Reverse Reconciliation: RR)

Quantum Key Distribution (QKD) Phase II: Classical Communication Protocol Pr(A i,B j ) Secret key Advantage distillation (e.g. announcement of bases in BB84 protocol) Error Correction (  Alice and Bob share the same key) Privacy Amplification (  generates secret key shared by Alice and Bob) Authenticated Classical Channel One-way (Direct communication: DC)

Quantum Key Distribution (QKD) Which type of correlations Pr(A i,B j ) are useful for QKD? secret bits per signal Distance (channel model) Not secure (proven) Protocol independent Regime of Hope secure (proven) protocol Talk: T. Moroder This talk Talk: G. O. Myhr

Precondition for Secure QKD Theorem (Two-way QKD)  AB Pr(A i,B j )  AB separable No Key MC, M. Lewenstein and N. Lütkenhaus, Phys. Rev. Lett. 92, (2004) AiAi BjBj  AB is separable if  AB =  i p i |a i  a i | A  |b i  b i | B

Precondition for Secure QKD Theorem (One-way QKD)  AB Pr(A i,B j )  AB has a symmetric extension to two-copies of system B (A), then the secret key rate for direct communication (reverse reconciliation) vanishes. T. Moroder, MC and N. Lütkenhaus, quant-ph/ AiAi BjBj

Precondition for Secure QKD  AB with symmetric extension to two copies of system B  AB Tr E (  ABE )=  AB  ABE AB E AB E  AB AB E Tr B (  ABE )=  AE =  AB  AB

Witness Operators (Two-way QKD)  AB separable? Tr  W  AB  < 0 Tr  W  AB   0   AB comp.with separable Witness Operators Tr  W  AB  =  ij c ij P(A i,B j ) MC, M. Lewenstein and N. Lütkenhaus, Phys. Rev. Lett. 92, (2004) MC, O. Gühne, N. Lewenstein, N. Lütkemhaus, Phys. Rev. A 71, (2005)  restricted knowledge compatible with sep. verifiable entangled  AB W Accesible witnesses: W =  ij c ij A i  B j Optimal W opt W opt

Witness Operators (One-way QKD)  AB symmetric extension? T. Moroder, MC and N. Lütkenhaus, quant_ph/ Tr  W  AB  =  ij c ij P(A i,B j ) Tr  W  AB  < 0 Tr  W  AB   0   AB comp. with symmetric extension  restricted knowledge compatible with symmetric extension. Without symmetric extension  AB W opt Witness Operators Accesible witnesses: W =  ij c ij A i  B j

Witness Operators (Two-way QKD) Evaluation: 4-state QKD protocol Uses two mutually unbiased bases: e.g. X,Z direction in Bloch sphere |0  |1  |1|1 |0|0 Error Rate: 36 % A\B Pr(A i,B j ) |  e  =cos(X)|00  +sin(X)(cos(Y)|01  +sin(Y)(cos(Z)|10  +sin(Z)|11  )) Systematic Search MC, M. Lewenstein and N. Lütkenhaus, Phys. Rev. Lett. 92, (2004) W 4 = 1/2(|  e  e | + |  e  e |  )

Witness Operators (Two-way QKD) (only parameter combinations leading to negative expectation values are marked) MC, O. Gühne, N. Lewenstein, N. Lütkemhaus, Phys. Rev. A 71, (2005) MC, O. Gühne, N. Lewenstein, N. Lütkemhaus, Proc. SPIE Int. Soc. Opt. Eng. 5631, 9-19 (2005). J. Eisert, P. Hyllus, O. Gühne, MC, Phys. Rev. A 70, (2004). Evaluation: 4-state QKD protocol Tr  W  AB  =  ij c ij P(A i,B j ) Other QKD protocols (including higher dimensional QKD schemes)

Witness Operators (Two-way and One-way QKD) One witness: Sufficient condition as a first step towards the demonstration of the feasibility of a particular experimental implementation of QKD. This criterion is independent of any chosen communication protocol in Phase II. All witnesses: Systematic search for quantum correlations (or symmetric extensions) for a given QKD setup. Ideally the main goal is to obtain a compact description of a minimal verification set of witnesses (Necessary-and Sufficient). Advantages: Witnesses operators Disadvantages: Witnesses operators Too many tests: To guarantee that no secret key can be obtained from the observed data it is necessary to test all the members of the minimal verification set. How to find them?: To find a minimal verification set of EWs, even for qubit-based QKD schemes, is not always an easy task, and it seems to require a whole independent analysis for each protocol.

Semidefinite Programming (SDP) Primal problem minimise c T x subject to F 0 +  i x i F i ≥ 0 with x=(x 1,..., x t ) T the objective variable, c is fixed by the optimisation problem, and the matrices F i are Hermitian SDPs can be efficiently solved Equivalent class of states S S = {  AB such as Tr(A i  B j  AB ) = Pr(A i,B j )  i,j} Qubit-based QKD (with losses):  AB  H 2  H 3

Semidefinite Programming (SDP) Two-way QKD  AB  S with  AB   0 No Key  AB Pr(A i,B j ) AiAi BjBj SDP Feasibility problem c = 0 minimise 0 subject to  AB (x)  0  AB  (x)  0 S  AB (x)  S MC, T. Moroder, and N. Lütkenhaus, in preparation (2006)

Dual problem maximise -Tr(F 0 Z) subject to Z ≥ 0 Tr(F i Z) = c i for all i where the Hermitian Z is the objective variable Semidefinite Programming (SDP) SDP: One-way QKD MC, T. Moroder, and N. Lütkenhaus, in preparation (2006) minimise 0 S subject to  AB (x)  S P  ABA’ (x)P =  ABA’ (x)  ABA’ (x)  0 Tr A’ [  ABA’ (x)] =  AB (x) with P the swap operator: P|ijk  ABA’ = |kji  ABA’ Dual problem (one way & two-way)  Witness operator optimal for Pr(A i,B j )

Evaluation We need experimental data  Pr(A i,B j ) Channel Model:  AB = (1-p) [ (1-e)|  AB  |+e/2  A  1 B ] + p  A  |vac  B  vac| p: probability Bob receives the vacuum state |vac  B e: depolarizing rate 1 B : 1 B - |vac  B  vac|

Evaluation Six-state protocol: |0  0|00|0 |1  |0  1|11|1 Alice and Bob: Bruß, Phys. Rev. Lett. 81, 3018 (1998). Four-state protocol: |0  0|00|0 |1  1|11|1 Alice and Bob: C.H. Bennett and G. Brassard, Proc. IEEE Int. Conf. On Computers, System and Signal Processing, 175 (1984). QBER: 33 % QBER: % H. Bechmann-Pasquinucci, and N. Gisin, Phys. Rev. A 59, 4238 (1999). QBER: 25 % QBER: 14.6 % C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, Phys. Rev. A 56, 1163 (1997); J. I. Cirac, and N. Gisin, Phys. Lett. A 229, 1 (1997).

Evaluation Two-state protocol: Alice: |  0  =  |0  +  |1  |  1  =  |0  -  |1  C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992). Bob: B 0 = 1/(2  2 )|  1   1  | B 1 = 1/(2  2 )|  0   0  | B ? = |0  0|+|1  1|-B 0 -B 1 B vac = |vac  vac| Limit USD p  1-2  2 e=0 Four-plus-two-state protocol: |0  |1  |0  Like 2 two-state protocols: B. Huttner, N. Imoto, N. Gisin, and T. Mor, Phys. Rev. A 51, 1863 (1995). Inflexion point e constant p=1-2  2 (USD) Other QKD protocols  MC, T. Moroder, and N. Lütkenhaus, in preparation (2006)

Summary Interface Physics – Computer Science: Classical Correlated Data with a Promise Necessary condition for secure QKD (Two-way & One-way). Relevance for experiments: show the presence of entanglement (states without symmetric extension) No need to enter details of classical communication protocols Prevent oversights in preliminary analysis One properly constructed proof suffices Evaluation: Semidefinite programming (qubit-based QKD protocols in the presence of loss). Task for Theory: Develop practical tools for realistic experiments ( for given measurements).