Materials 286K Class 13, Local structure and structural effects in cuprates Right: (La,M) 2 CuO 4 superconducting T c : Composition.

Slides:



Advertisements
Similar presentations
La1–xCaxMnO3; Saturation magnetization at 90 K.
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Kondo Physics from a Quantum Information Perspective
Vortex-Nernst signal and extended phase diagram of cuprates Yayu Wang, Z. A. Xu, N.P.O (Princeton) T. Kakeshita, S. Uchida (U. Tokyo) S. Ono and Y. Ando.
Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,
NMR Studies of Metal-Insulator Transitions Leo Lamontagne MATRL286K December 10 th, 2014.
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
Dynamic Phase Separation in Manganites Luis Ghivelder IF/UFRJ – Rio de Janeiro Main collaborator: Francisco Parisi CNEA – Buenos Aires.
High Temperature Superconductivity: D. Orgad Racah Institute, Hebrew University, Jerusalem Stripes: What are they and why do they occur Basic facts concerning.
Stripe Ordering in the Cuprates Leland Harriger Homework Project for Solid State II Instructor: Elbio Dagotto Physics Dept., University of Tennessee at.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Negative Oxygen Isotope Effect on the Static Spin Stripe Order in La Ba CuO 4 Z. Guguchia, 1 R. Khasanov, 2 M. Bendele, 1 E. Pomjakushina,
Pairing glue antiferromagnetism, polaron pseudogap High-Tc.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Doping and Disorder in the Oxygenated, Electron-doped High-temperature Superconductor Pr 2-x Ce x CuO 4±  The building blocks of the high-temperature.
Materials 286K Class 08. LnNiO 3 LaNiO 3 and LaCuO 3 are some of the few (undoped) metals.
Electronic structure of La2-xSrxCuO4 calculated by the
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Materials 286K Class 14, 4d and 5d Going from 3d to 4d, we expect broader bands, and for 5d, relativistic effects. The changes in.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
The attraction of  + to O 2- : using muons to study oxides Steve Blundell Clarendon Laboratory, Dept. Physics, University Of Oxford, UK.
What Pins Stripes in La2-xBaxCuO4? Neutron Scattering Group
Class 03. Percolation etc. [Closely following the text by R. Zallen]
Materials 286K Class 05. The Hubard model and magnetism On the insulating side of the M–I transition, magnetism of some sort (usually.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Introduction to EXAFS IV Examples
Atomic structure at the nanoscale: a 21st century materials challenge
Michela Fratini Dipartimento di Fisica Università degli studi di Roma “La Sapienza” 6th INTERNATIONAL CONFERENCE OF THE STRIPES SERIES STRIPES 08 Quantum.
Hall Effect in Sr 14−x Ca x Cu 24 O 41 E. Tafra 1, B. Korin-Hamzić 2, M. Basletić 1, A. Hamzić 1, M. Dressel 3, J. Akimitsu 4 1.Department of Physics,
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Pressure effect on the superconductivity of HgBa 2 Ca 2 Cu 3 O 8+  Shimizu Lab. M1 KAMADA Yukihiro.
An Introduction to Fe-based superconductors
Materials 286K Class 12, Experimental techniques: Resistivity Ultrathin Bi films. “The onset of superconductivity in homogeneous.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
High Pressure study of Bromine
1 BROOKHAVEN SCIENCE ASSOCIATES End-station for Soft X-ray Diffraction Microscopy Stuart Wilkins CMPMSD, BNL.
Materials 286K Class 09. VO 2, V 2 O 3 Morin reported on TiO, VO, Ti 2 O 3, V 2 O 3, and VO 2 Morin, Phys. Rev. Lett. 3 (1959) 34–36.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Electronic phase separation in cobaltate perovskites Z. Németh, Z. Klencsár, Z. Homonnay, E. Kuzmann, A. Vértes Institute of Chemistry, Eötvös Loránd University,
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Nuclear waste treatment by vitrification Transformation of highly radioactive liquid waste into solid waste An atomic scale incorporation of radionucleides.
The iron-pnictide/chalcogenide (Fe-Pn/Ch) compounds have attracted intense interest recently, largely due to the observation of high-temperature superconductivity.
Physics Department, Technion, Israel Meni Shay, Ort Braude College, Israel and Physics Department, Technion, Israel Phys. Rev. B.
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
Spin Waves in Metallic Manganites Fernande Moussa, Martine Hennion, Gaël Biotteau (PhD), Pascale Kober-Lehouelleur (PhD) Dmitri Reznik, Hamid Moudden Laboratoire.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Materials 286K Class 10, Oxide superconductors Li 1–x Ti 2+x O 4 Johnston, Prakash, Zachariasen, Viswanathan, MRS Bulletin 8 (1973)
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
Superconductivity and magnetism in iron-based superconductor
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Unconventional superconductivity, where Cooper pairing is driven by something other than electron-phonon coupling, often appears in proximity to magnetic.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
High temperature superconductivity…a bad case of stripes?
Electrical Transport Properties of La 0.33 Ca 0.67 MnO 3 R Schmidt, S Cox, J C Loudon, P A Midgley, N D Mathur University of Cambridge, Department of Materials.
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
Presentation transcript:

Materials 286K Class 13, Local structure and structural effects in cuprates Right: (La,M) 2 CuO 4 superconducting T c : Composition dependence at 10 K of (a) the in-plane copper-oxygen, Cu-O(1), bond lengths; (b) the orthorhombic strain; (c) the Cu-O(1)-Cu bond angles; (d ) the superconducting T c ’s for La 2–x Sr x CuO 4 and La 2–x Ca x CuO 4 systems. Tetragonal La 2–x Sr x CuO 4 systems under applied pressure are marked by solid squares. Dabrowski, Wang, Rogacki, Jorgensen, Hitterman, Wagner, Hunter, Radaelli, Hinks, Phys. Rev. Lett. 76 (1996) 1348–1351.

Materials 286K Class 13, Local structure and structural effects in cuprates Cu–O bond distances in La 1.85 Sr 0.15 CuO 4 appear to suggest two phases at low temperature, associated with stripes. Bianconi, Saini, Lanzara, Missori, Rossetti, Moro, Oyanagi, Yamaguchi, Oka, Ito, Phys. Rev. Lett. 76 (1996) 3412–3415.

Materials 286K Class 13, Local structure and structural effects in cuprates MBE-grown LSCO: Highest T C recorded, potentially due to interface effects. Bozovic, Logvenov, Belca, Narimbetov, Sveklo, Phys. Rev. Lett. 89 (2002) (1–4).

Materials 286K Class 13, Local structure and structural effects in cuprates Average compositions versus bilayers: T c is enhanced Yuli, Asulin, Millo, Orgad, Iomin, Koren, Phys. Rev. Lett. 101 (2008) (1–4).

Materials 286K Class 13, Local structure and structural effects in cuprates Highly optimized “123”. T c reaches 94.3 K. Liang, Bonn, Hardy, Phys. Rev. B. 73 (2006) R(1–4).

Materials 286K Class 13, Local structure and structural effects in cuprates Highly optimized “123”. T c reaches 94.3 K. T c is slightly suppressed near p = 1/8 holes. Stripe formation? Liang, Bonn, Hardy, Phys. Rev. B. 73 (2006) R(1–4).

Materials 286K Class 13, Local structure and structural effects in cuprates McAllister, Attfield, Phys. Rev. Lett. 83 (1999) 3289–3292. Cation disorder in 214 cuprates: All doped at x = 0.15

Materials 286K Class 13, Local structure and structural effects in cuprates Cation disorder in 214 cuprates: All doped at x = 0.15 McAllister, Attfield, Phys. Rev. Lett. 83 (1999) 3289–3292.

Materials 286K Class 13, Local structure and structural effects in cobaltates Polarons in La 1–x Sr x CoO 3 (x = 0.3): Behavior attributed to phase separation. Caciuffo, Mira, Rivas, Senaris-Rodrguez, Radaelli, Carsughi, Fiorani, Goodenough, Europhys. Lett. 45 (1999) 399–405.

Materials 286K Class 13, Local structure and structural effects in cobaltates Polarons in La 1–x Sr x CoO 3 (x = 0.3): Magnetic clusters seen in small-angle scattering grow and then shrink. Caciuffo, Mira, Rivas, Senaris-Rodrguez, Radaelli, Carsughi, Fiorani, Goodenough, Europhys. Lett. 45 (1999) 399–405.

Materials 286K Class 13, Local structure and structural effects in manganites Pr 0.7 Ca 0.3 MnO 3 : Radaelli, Ibberson, Argyriou, Casalta, Andersen, Cheong, Mitchell, Phys. Rev. B 63 (2001) (1–4).

Materials 286K Class 13, Local structure and structural effects in manganites Pr 0.7 Ca 0.3 MnO 3 : Radaelli, Ibberson, Argyriou, Casalta, Andersen, Cheong, Mitchell, Phys. Rev. B 63 (2001) (1–4).

Materials 286K Class 13, Local structure and structural effects in manganites La 1–x Ca x MnO 3 : PDF peak corresponding to O–O correlations. (a) x = 0.25, (b) x = 0.21, and (c) x = Billinge, DiFrancesco, Kwei, Neumeier, Thompson, Phys. Rev. Lett 77 (1996) 715–718.

Materials 286K Class 13, Local structure and structural effects in manganites La 1–x Ca x MnO 3 in the ferromagnetic regime Bozin, Schmidt, DeConinck, Paglia, Mitchell, Chatterji, Radaelli, Proffen, Billinge, Phys. Rev. Lett. 98 (2007) (1–4).

Materials 286K Class 13, Local structure and structural effects in manganites La 1–x Ca x MnO 3 in the ferromagnetic regime Bozin, Schmidt, DeConinck, Paglia, Mitchell, Chatterji, Radaelli, Proffen, Billinge, Phys. Rev. Lett. 98 (2007) (1–4).

Materials 286K Class 13, Local structure and structural effects in thiospinels CuIr 2 S 4 : M–I transition at 230 K. Radaelli, Horibe, Gutmann, Ishibashi, Chen, Ibberson, Koyama, Hor, Kiryukhin, Cheong, Nature 416 (2002) 155–158.

Materials 286K Class 13, Local structure and structural effects in thiospinels CuIr 2 S 4 : M–I transition at 230 K. Temperature, Cr 3+ doping, and X-ray fluence effects. Bozin, Masadeh, Hor, Mitchell, Billinge, Phys. Rev. Lett. 106 (2011) (1–4).

Materials 286K Class 13, Local structure and structural effects in thiospinels CuIr 2 S 4 : M–I transition at 230 K. Temperature, Cr 3+ doping, and X-ray fluence effects. Bozin, Masadeh, Hor, Mitchell, Billinge, Phys. Rev. Lett. 106 (2011) (1–4).