THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,

Slides:



Advertisements
Similar presentations
First observation of electroluminescence in liquid xenon within THGEM holes: towards novel Liquid Hole-Multipliers L. Arazi, A. Breskin, A. Coimbra*,
Advertisements

Gas Detector Developments Jin Li. Liquid Xenon case Liquid Xenon can be considered as a gaseous xenon of 520 atm. K.Masuda, S. Takasu, T.Doke et al. (Doke.
A. BreskinTIPP09 Tsukuba VISIBLE-SENSITIVE GAS-PMs A. Breskin, A. Lyashenko, R. Chechik Weizmann Institute of Science, Rehovot, Israel J.M.F. dos Santos,
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
A. Lyashenko Alkali-antimonide PCs for GPMPC workshop, Chicago 09 Alkali-antimonide Photocathodes for Gas- Avalanche Photomultipliers Recent review on.
Detectors for Tomorrow and After Tomorrow… Amos Breskin Radiation Detection Physics Group Weizmann Institute 1 Amos Breskin.
C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers:
A. Breskin RD51 Amsterdam 4/08 ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
A. Lyashenko INSTR08 – BINP – Feb ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
RICH04 Mexico A. Breskin Ion-induced effects in GEM & GEM/MHSP- gaseous photomultipliers for the UV & visible spectral range
Gaseous photomultipliers and liquid hole-multipliers for future noble-liquid detectors L. Arazi [1], A. E. C. Coimbra [1,2], E. Erdal [1], I. Israelashvili.
1 The GEM Readout Alternative for XENON Uwe Oberlack Rice University PMT Readout conversion to UV light and proportional multiplication conversion to charge.
Fabio Sauli-CERN 1 IEEE-NSS Rome 04 F. Sauli, T. Meinschad, L. Musa, L. Ropelewski CERN, GENEVA, SWITZERLAND PHOTON DETECTION AND LOCALIZATION WITH THE.
THGEM “news” Mostly Ne-mixtures… Weizmann M. Cortesi, J. Miyamoto, R. Chechik, A. Layshenko CERN V. Peskov Coimbra & Aveiro J. Veloso, C. Azevedo, J. Escada,
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
Sheffield : R. Hollingworth, D. Tovey R.A.L. : R.Luscher Development of Micromegas charge readout for two phase Xenon based Dark Matter detectors Contents:
DEVELOPMENT OF A THGEM-BASED PHOTON DETECTOR FOR CHERENKOV IMAGING APPLICATIONS Silvia Dalla Torre INFN - Trieste On behalf of an Alessandria-CERN-Freiburg-Liberec-Prague-Torino-TriesteCollaboration.
CsI-TGEM vs. CsI-MWPC photodetector Some part of this work was performed in collaboration between CERN and Breskin group.
1 IBF in aligned, misaligned and FLOWER THGEMs The IBF problem Standard THGEM configuration COBRA and extra electrode Misaligned holes FLOWER THGEM solution.
R & D at BHU B.K. Singh (On behalf of HEP Group).
Taku Gunji Center for Nuclear Study The University of Tokyo
Rachel Chechik Weizmann Institute TIIPP09 Tsukuba March 2009 The THGEM: a THick robust Gaseous Electron Multiplier for radiation detectors A.Breskin, M.
6-Aug-02Itzhak Tserruya PHENIX Upgrade mini-Workshop1 Boris Khachaturov, Alexander Kozlov, Ilia Ravinovich and Itzhak Tserruya Weizmann Institute, Israel.
Itzhak Tserruya, BNL, May13, HBD R&D Update: Demonstration of Hadron Blindness A. Kozlov, I. Ravinovich, L. Shekhtman and I. Tserruya Weizmann Institute,
Study of TGEMs and RETGEMs for the possible ALICE upgrade By Himank Anand and Isha Shukla (CERN summer students) Supervisor :Vladimir Peskov.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
Future Possibilities for Measuring Low Mass Lepton Pairs in Christine Aidala for the Collaboration Quark Matter 2002, Nantes.
Development of Au-coated THGEM for Single Photon, Charged Particle, and Neutron Detection Yuguang Xie a *, Junguang Lv a, Aiwu Zhang a, Boxiang Yu a, Tao.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
EUDET Meeting, Munich – October 18, Ongoing activities at Saclay David Attié D. Burke; P. Colas; E. Delagnes; A. Giganon; Y. Giomataris;
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
Discharge Studies in MPGD: what could be done in the frame of WG-2 collaboration P. Fonte, V. Peskov.
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
1 HBD R&D: Update Itzhak Tserruya (for A. Kozlov, I. Ravinovich and L. Shekhtman) Weizmann Institute, Rehovot DC meeting Feb. 14, 2003.
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors C. Woody B.Azmuon 1, A Caccavano 1, Z.Citron 2, M.Durham 2, T.Hemmick 2, J.Kamin.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
1 Fulvio TESSAROTTO GDD meeting, CERN, 01/10/2008 Trieste THGEM news New THGEM test in the COMPASS hall New THGEM test in the COMPASS hall Preparation.
16 Sept PSD 7 Liverpool 1 MHSP with position detection capability MHSP with position detection capability H. Natal da Luz a,b, J.F.C.A. Veloso a,b,
Update on THGEM project for RICH application Elena Rocco University of Eastern Piedmont & INFN Torino On behalf of an Alessandria-CERN-Freiburg-Liberec-
Recent THGEM investigations A. Breskin, V. Peskov, J. Miyamoto, M. Cortesi, S. Cohen, R. Chechik Weizmann Institute RD51 Paris Oct 08 - Gain: UV vs. X-rays.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
THGEMs: very recent results towards applications in DHCAL & LXe detector readout Weizmann: A. Breskin, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra &
P HOTON Y IELD DUE TO S CINTILLATION IN CF4 Bob Azmoun, Craig Woody ( BNL ) Nikolai Smirnov ( Yale University )
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
THGEM Marco Cortesi Weizmann Institute of Science PANIC08 Recent Advances in THGEM Detectors M. Cortesi, A. Breskin, R. Chechik, R. Alon, J. Miyamoto Weizmann.
Cryogenic Thick-GEM (THGEM) detectors and their applications Cryogenic Thick-GEM (THGEM) detectors and their applications Affordable instrumentation for.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
Andrey Sokolov Novosibirsk State University (NSU) Budker Institute of Nuclear Physics (Budker INP) Novosibirsk, Russia Two-phase Cryogenic Avalanche Detector.
R&D on Hadron Blind detector, recent results Issues addressed: - gain limits in CF 4 with heavily ionizing particles - operation.
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
Presented by Samuel DUVAL On behalf of the Xénon group Industry-Academia Matching Event on Micro-Pattern Gaseous Detectors April 2012, Annecy-le-Vieux.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
Large THGEM sampling elements for DHCAL status report
Thick-GEM sampling element for DHCAL: First beam tests & more
Amos Breskin Weizmann Institute of Science
Study of TGEMs and RETGEMs for the possible ALICE upgrade
MPGD 2015 Concise Summary Amos Breskin.
standard THGEM versus FLOWER
WG1 Task2 New structures, new designs, new geometries
THGEM: Introduction to discussion on UV-detector parameters for RICH
Micro-Pattern Gaseous Detectors
Gaseous Beam Position Detectors, with Low Cost and Low Material Budget
3g Medical Imaging R&D with liquid xenon Compton telescope
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
E. Erdal(1), L. Arazi(2), A. Breskin(1), S. Shchemelinin(1), A
Presentation transcript:

THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo, J. dos Santos, Nantes: S. Duval, D. Thers, Work within CERN-RD51 Amos Breskin Weizmann Institute of Science THGEM Recent works: Review NIM A 598 (2009) JINST 5 P JINST 4 P08001 Amos Breskin RICH2010 Cassis

Amos Breskin Thick Gas Electron Multiplier (THGEM) SIMPLE, ROBUST, LARGE-AREA Printed-circuit technology  Intensive R&D  Many applications 1 e - in e - s out ~40kV/cm THGEM Double-THGEM: higher gains ~ 10-fold expanded GEM Weizmann 2003 Effective single-electron detection Few-ns RMS time resolution Sub-mm position resolution MHz/mm 2 rate capability Cryogenic operation: OK Gas: molecular and noble gases Pressure: 1mbar - few bar Magnetic fields Thickness 0.5-1mm small rim prevents discharges Similar hole-multipliers: - Optimized GEM: L. Periale et al., NIM A478 (2002) LEM: P. Jeanneret, PhD thesis, RICH2010 Cassis

Comparatively low operation voltages  reduced discharge probability, discharge energy and charging-up effects High gains, even with single-THGEM High single-photoelectron gains even in the presence of ionizing background (higher dynamic range compared to Ar-mixtures) Important for RICH: Ne yields ~ 2.5 fold less MIP- induced electrons than Ar Photon detection efficiency? Ne-based mixtures Amos Breskin RICH2010 Cassis

Gain: Single/Double THGEM in Ne-mixtures Very high gain in Ne and Ne mixtures, even with X-rays At very low voltages !! X-rays: 2-THGEM 100% Ne: Gain 10 ~300V UV: 1-THGEM Ne/CF 4 (10%): Gain > 10 ~800V 10 6 Double-THGEM 9 keV X-rays Single-THGEM CsI PC + UV-light (180 nm) 10 6 Amos Breskin RICH2010 Cassis 2009 JINST 4 P08001

Amos Breskin A VERY FLAT UV-IMAGING DETECTOR ~10-12 mm h Photocathode THGEMs readout 100x100mm 2 THGEM With 2D delay-line readout  0.3mm holes Cortesi et al JINST 2 P09002 window Resistive anode Spatial Resolution (FWHM) Ar/5%CH 4  0.7 mm with 9 keV X-rays Ne  1.4 mm with 9 keV X-rays Ne/5%CH 4  0.3 mm with 4 keV X-rays RICH2010 Cassis

THGEM/Ne-mixtures: Pulse shape THGEM signals w fast amp Increasing %CH 4 -> higher voltages & faster avalanches Amos Breskin RICH2010 Cassis

Gain Stability Single THGEM (t=0.4mm, d=0.5mm, a=1mm, rim=0.12mm) Gain = 10 4, UV light, e - flux ≈ 10 kHz/mm 2 CsI UV Amos Breskin RICH2010 Cassis GAIN-STABILTY (charging up, substrate polarization) function of : substrate material, rim size around hole, HV value, gain, radiation flux, surface resistivity, mode of operation etc. Good stability (Trieste): Holes with no rim – but no-rim: times lower gain New results in Ne-mixtures (much lower HV): ~stability with rim

UV-photon detectors UV-photon detectors RICH Noble-liquids Amos Breskin RICH needs: high efficiency for photons low sensitivity to MIPs & background Stability (CsI, gain) low discharge rate RICH2010 Cassis

R&D activity for upgrades of ALICE & COMPASS RICH EXEMPLE: ALICE Amos Breskin Recent CERN of THGEM/CsI UV-RICH protos: Peskov, Levorato talks RICH2010 Cassis Very High Momentum Particle Identification Detector (VHMPID)

Two UV-photon options considered for ALICE & COMPASS RICH THGEM (RETGEM) ? ?  MWPC Amos Breskin Open geometry: Photon & ion feedback  gain limit  PC aging PC excitation effects MIP sensitivity Closed geometry: No photon feedback Reduced ion feedback More robust, simpler Reduced MIP sensitivity  high gains  Lower PC aging RICH2010 Cassis Extensive Comparative study: THGEM/CsI vs MWPC/CsI: Talk by Peskov

Double-THGEM photon-imaging detector  RICH UV photon e-e- Segmented readout electrode CsI photocathode THGEM pe photocathode E drift MIP e THGEM Reflective CsI PC on top of THGEM: - Photoelectron extraction efficiency (QE eff ) - collection efficiency into holes - Photon detection above threshold Unique: Slightly reversed E drift (50-100V/cm)  Good photoelectron collection  low sensitivity to MIPS *  background reduction & higher gain! Amos Breskin Chechik NIM A553(2005)35 RICH2010 Cassis _______ * Phenix GEM/CsI HBD Talk by Tserruya

Gain in 1-, 2-, 3-THGEM Amos Breskin 10 5 Ne/5%CH 4 Ne/5%CF 4 THGEM: thickness t=0.4 mm, holes d=0.3 mm, rim h=0.1 mm, pitch a = 1 mm. Conversion gap 10 mm, transfers and induction gaps 2 mm X-ray rate: 1kHz/mm 2 Similar HV for similar gains RICH2010 Cassis 9 keV 1KHz/mm 2

1-, 2-, 3-THGEM:Gain limit vs rate: x-rays Amos Breskin MAX-gain decrease with rate observed, similarly to other gas-detectors  Rather limit In this geometry, with 3-THGEM: Ne/5%CH 4 & Ne/5%CF 10 4 Hz/mm 2 (x-rays)  max-gain of ~6x10 4  1.5 x 10 7 electrons (~250 electrons) 10 5 Hz/mm 2 UV photons  5 x 10 6 electrons (gain 5 x 10 6 ) 10 5 Ne/5%CH 4 Ne/5%CF 4  PESKOV talk

Normal drift field Reversed drift gain 5x10 5 the breakdown rate with reversed drift field is almost 10 times lower With ~same pe collection efficiency Ru+UV Fe+UV UV only Ru+UV Fe+UV UV only pe photocathode E drift MIP e THGEM THGEM: Discharge rate Gain Counting-RATES: Ru ~100 Hz/ cm2 Fe ~10KHz/cm2 Triple THGEM, Ne+10%CH sparks/min sparks/min Amos Breskin RICH2010 Cassis

To prove that Ne-based mixtures can be beneficial for RICH  R&D to demonstrate, as a first step, that in Ne-mixtures one can reach: - good photoelectron extraction from CsI photocathode  extr - good photoelectron collection efficiency  coll QE in vacuum Effective area Extraction efficiency Backscattering in gas Collection into holes threshold photocathode pe THGEM Photon detection efficiency - high gain: high electron detection efficiency above threshold  photon Amos Breskin RICH2010 Cassis EFFECTIVE PHOTON DETECTION EFFICIENCY: Absolute Detection Efficiency:

Electric field at THGEM electrode surface Photoelectron extraction from CsI Ne/10%CF 4 ~as good as CF 4  e.g. value for Ne/10%CF 4 Amos Breskin feedback d=0.3mm, a=0.7mm, t=0.4mm Thicker THGEM  higher fields 2010 JINST 5 P01002 CH 4 CF 4

Photoelectron collection into THGEM holes Even at low gain  100% collection efficiency in Ne-mixtures 2010 JINST 5 P01002 Amos Breskin RICH2010 Cassis

Gas∆V THGEM (V) Gain (UV) QE 170nm A eff This THGEM A eff [1] Optimal THGEM ε extr ε coll ε effph This THGEM ε effph 2 Optimal THGEM Ne/CH 4 (95/5)8005.4E [2] Ne/CH 4 (90/10)9001.3E [3] Ne/CF 4 (95/5)7506.0E Ne/CF 4 (90/10)8501.2E [1] [1] Optimal THGEM: t = 0.4 mm, d = 0.3 mm, a = 1 mm; h = 0.01 mm, [2] [2] Value for 1.5 kV/cm photocathode electric field [3] [3] Values for 2kV/cm photocathode electric field Wire chamber: fp th ~0.70 in COMPASS  ε photon ~0.90 in ALICE  ε 170nm Expected THGEM UV detector performance 2010 JINST 5 P01002 Amos Breskin Need RICH-THGEM-proto beam studies~ expected ~0.2 for fp th ~0.9 RICH2010 Cassis

Avalanche-ion blocking Avalanche ions impinging the photocathode - damage the photocathode - lifetime limit, - secondary effects – gain limits Damage: Long understood issue In present MWPC/CsI photon detectors: 100% ions hit the photocathode In cascaded-THGEM: few% Patterned hole multipliers: to Efforts to pattern THGEM electrodes

The Micro-hole & Strip plate (MHSP) Weizmann/Coimbra/Aveiro With MHSP/GEM cascade: BEST ION TRAPPING : ~ X better than 3-GEM 20 X better than Micromegas ION BLOCKING with PATTERNED HOLE MULTIPLIERS IBF=3*10 Gain=10 5 Like GEM, but with additional patterned strip-electrodes: extra gain OR ion blocking. Ion deflection by strips between holes  efficient ion trapping 2007 JINST 2 P08004 RICH2010 Cassis Amos Breskin

CHALLENGE: visible-light Gas Photomultipliers! Cascaded patterned hole-multipliers with K-Cs-Sb photocathodes Gain ~ full photoelectron collection efficiency Works uniquely due to efficient ion blocking 10 5  “flat-panel” large-area photon-imaging detectors insensitive to B  numerous applications: RICH, large Astro experiments… Cascaded GEM: gain limit was < JINST 4 P07005 Bialkali PC Visible photon K-Cs-Sb 375nm CsI Sealed vis-GPM RICH2010 Cassis Amos Breskin

THCOBRA: a patterned THGEM for ion blocking Pitch = 1 mm Hole diameter = 0.3 mm Rim = 0.1 mm Thickness = 0.4 mm Aveiro/Coimbra/Weizmann Veloso POSTER THGEM-FTHCOBRA THGEM-THCOBRA Need to block ions without loosing primary photoelectrons So far: good ion blocking but loss of photoelectrons Previous success: FRMHSP/GEM/MHSP Ion blocking factor 10 4 & full electron collection Ion blocking electrodes Ion reduction: less feedback, less PC aging RICH2010 Cassis Amos Breskin

Cryo-THGEM applications RICH2010 Cassis Amos Breskin

Noble-gas detectors WIMP Gas Liquid e- E Ar, Xe… Primary scintillation Secondary scintillation Electron multiplier &/or photomultiplier photomultiplier Amos Breskin Charge &/or scintillation-light detection in liquid phase or Charge &/or scintillation-light detection In gas phase of noble liquids: “TWO-PHASE DETECTORS” Possible applications: Noble liquid ionization calorimeters Noble-Liquid TPCs (solar neutrinos) Two-phase detectors for Rare Events (WIMPs,  -decay, …) Noble-liquid  -camera for medical imaging Gamma astronomy Gamma inspection..... RICH2010 Cassis Use THGEM electron multipliers & THGEM/CsI photomultipliers ?

Experimental setup at Budker-Novosibirsk First results with double-THGEM in 2-phase 84K Bondar 2008 JINST 3 P07001 Good prospects for CRYOGENIC GAS-PHOTOMULTIPLIERS operation in gas phase of noble liquids! Amos Breskin RICH2010 Cassis Double-THGEM in two-phase Xe at T=164K Max. gain limit due to connector… 2-THGEM G-10 1-THGEM G-10 2-THGEM KEVLAR 3-GEM Stable operation in two-phase Ar, T=84K Double-THGEM  Gains: 8x THGEM G-10 two-phase Xe Buzulutskov VCI 2010; in preparation for JINST

THGEM and Cryo temperatures G-APD bipolar G-APD unipolar 2-THGEM Buzulutskov et al. (Budker/ITEP/Weizmann) 60 keV X-ray at 2THGEM gain=400  SiPM ~1000e before amplification! Two-phase detectors with THGEM+SiPM  ~0.6pe/initial e at THGEM gain=400 in Ar  SiPM signal: N pe ~ 0.6N initial e’s x SiPM gain Efficient readout of noble-liquid detectors? 2-phase LAr detector THGEM G-APD (SiPM) VCI 2010 & paper submitted to JINST Idea: Good low THGEM-gain, recording avalanche photons with Geiger APDs (G-APD) SiPM RICH2010 Cassis Amos Breskin

Cryo-GPM with windows Cryo-GPM with windows 2-phase or liquid scintillators Amos Breskin Best operation, confirmed at RT: Ne/CH 4 or Ne/CF 4 b) radiation LXe e- THGEM GPM EGEG Secondary scintillation Xe UV-window 10 6 GPM in noble-gas: gain affected by lack of impurities arXiv: arXiv: GPM w window: better control of counting gas / stability RICH2010 Cassis Higher gain & lower HV

Cryo-GPM for LXe Medical Compton Camera THGEM : thickness = 400  m hole Ø = 300  m hole spacing = 700  m rim size = 50  m  V THGEM 4 mm  V THGEM Double-THGEM layout MgF 2 UV window Reflective CsI photocathode Ne/CH 4 GPM location LXe TPC gamma-converter with field shaping Subatech-Nantes/Weizmann 44 Sc  +  emitter LXe Gamma Camera PET 2009 JINST 4 P12008 RICH2010 Cassis Amos Breskin

Samuel Duval, Ran Budnik & Marco Cortesi (WIS) K Double-THGEM RT & CRYO-T K Double-THGEM/CsI at RT & CRYO-T Preliminary CRYO-T in “improvised“ setup at Weizmann Cryo-medium: LN 2 /ethanol Soon: studies at Nantes with LXe TPC 10 2 RT Ne/5%CH 4 Single-UV Preliminary results in Coimbra: at RT, similar 1-3 bar HV limit (connector) RICH2010 Cassis

XEMIS LXe Compton Camera Amos Breskin LXe-TPC GPM  Tests in LXe: May Nantes cryostat RICH2010 Cassis

2-phase DM detectors XENON100Kg: running with PMTs! PROBLEM: cost & natural radioactivity of multi-ton detectors! Proposed design of XENON 1ton Possible design of the XENON 1 ton two-phase LXe DM TPC detector with ~ 121 QUPID vacuum photon detectors. Background: 1mBq/tube Expectation: < 1 WIMP interaction/Kg/Day Aprile/XENON WIMP interaction LXe e- THGEM GPM Detector Primary scintillation EGEG ELEL Secondary scintillation Xe THGEM GPM Detector UV-window Ne/CF4 ? RD51: Weizmann/Nantes/Coimbra THGEM-GPM (gas photomultiplier): Simple, flat (save LXe), robust Low-cost Radio-clean ? Lower thresholds ? RICH2010 Cassis Amos Breskin

Large THGEM electrodes Industry: square-meters possible 300x300mm 2 THGEM 90, mm diameter holes (Print Electronics, IL) 600x600mm 2 THGEM 600, mm diameter holes (Eltos, IT) Status: so far only “mechanical” electrodes WEIZMANN TRIESTE RICH2010 Cassis

SUMMARY a versatile robust electron multiplier Good suitability for photon detection with Ne-mixtures RICH: expected photon detection efficiency 170nm Good stability in background environment Comparative results with MWPC/CsI: talk by PESKOV Various ongoing and potential RT & low-T UV-photon detectors for RICH Sampling elements for Digital Hadron Calorimeters Neutron-imaging detectors Cryogenic UV-photon detectors for medical imaging and dark matter Large-area moderate-resolution tracking detectors Amos Breskin RICH2010 Cassis

Amos Breskin SPARE SLIDES RICH2010 Cassis

Amos Breskin Double-THGEMTHGEM+Micromegas GPM: Double-THGEM vs THGEM+Micromegas 2-THGEM THGEM+MM 10 7 Ne/CF 4 (5-10%) THGEM: Thickness t=400  m, hole dia d=300  m, pitch a=700  m, rim R=50  m. MICROMEGAS: t 5  m, d 30  m, a 60  m. ~25 photons pulse Weizmann/Nantes Nov Samuel Duval, Ran Budnik & Marco Cortesi RICH2010 Cassis

Amos Breskin 2-THGEM THGEM+MM 10 7 Samuel Duval, Ran Budnik & Marco Cortesi 10 2 Room temperature Ne/CF 4 2-THGEM vs THGEM-MicromegasMicromegas in Ne-mixtures GPM: Double-THGEM vs THGEM+Micromegas RICH2010 Cassis

MICROMEGAS (InGrid) covered with CsI photon CsI PC Chip area: 14x14mm 2. (256×256 pixels of 55×55 μm 2 ) TIMEPIX Ingrid without CsI Ingrid with CsI PC: 2D UV Image of a 10mm diameter mask Few-micron resolutions UV absorbed by the fingerprint on the window Melai, Fransen 2009 INGRID/CMOS PHOTON IMAGING DETECTOR 50  m mesh RICH2010 Cassis Amos Breskin