Internet multimedia: simplest approach audio, video not streamed: r no, “pipelining,” long delays until playout! r audio or video stored in file r files.

Slides:



Advertisements
Similar presentations
MM Networking Applications
Advertisements

1 Multimedia Networking EECS 489 Computer Networks Z. Morley Mao Monday March 26, 2007 Acknowledgement: Some.
Voice over IP (VoIP) and the Session Initiation Protocol (SIP)
29.1 Chapter 29 Multimedia Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
19 – Multimedia Networking. Multimedia Networking7-2 Multimedia and Quality of Service: What is it? multimedia applications: network audio and video (“continuous.
CSE534 Fundamentals of Computer Networks Lecture 15: Multimedia networking Based on slides by Kurose + Ross. Updated by P Gill. Spring 2015 Computer Networking:
User Control of Streaming Media: RTSP
Chapter 6 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July.
Chapter 6 outline r 6.1 Multimedia Networking Applications r 6.2 Streaming stored audio and video m RTSP r 6.3 Real-time, Interactive Multimedia: Internet.
Voice Over Internet- Issues Dr. Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology, Bombay. Dr. Abhay Karandikar Department.
Multimedia Networking: An Overview
Application layer (continued) Week 4 – Lecture 2.
7: Multimedia Networking7-1 Multimedia, Quality of Service: What is it? Multimedia applications: network audio and video (“continuous media”) network provides.
Chapter 6: Multimedia Networking
Chapter 6 Multimedia Networking
1 CSE 401N Multimedia Networking Lecture Multimedia, Quality of Service: What is it? Multimedia applications: network audio and video network provides.
7: Multimedia Networking7-1 Chapter 7 Multimedia Networking A note on the use of these ppt slides: We’re making these slides freely available to all (faculty,
Chapter 6: Multimedia Networking
Multimedia Applications r Multimedia requirements r Streaming r Phone over IP r Recovering from Jitter and Loss r RTP r Diff-serv, Int-serv, RSVP.
1 Computer Networks Transport Layer Protocols. 2 Application-layer Protocols Application-layer protocols –one “piece” of an app –define messages exchanged.
Computer Networking Multimedia.
CS640: Introduction to Computer Networks
Process-to-Process Delivery:
CS 218 F 2003 Nov 3 lecture:  Streaming video/audio  Adaptive encoding (eg, layered encoding)  TCP friendliness References: r J. Padhye, V.Firoiu, D.
RTSP Real Time Streaming Protocol
CIS679: RTP and RTCP r Review of Last Lecture r Streaming from Web Server r RTP and RTCP.
6: Multimedia Networking6a-1 Chapter 6: Multimedia Applications r Multimedia requirements r Streaming r Phone over IP r Recovering from Jitter and Loss.
Multimedia and QoS#1#1 Multimedia Applications. Multimedia and QoS#2#2 Multimedia Applications r Multimedia requirements r Streaming r Recovering from.
Chapter 7 Multimedia Applications
7: Multimedia Networking7-1 Chapter 7 Multimedia Networking A note on the use of these ppt slides: We’re making these slides freely available to all (faculty,
K. Salah 1 Beyond Best Effort Technologies Our primarily objective here is to understand more on QoS mechanisms so that you can make informed decision.
Streaming Stored Audio and Video (1) and Video (1) Advanced Multimedia University of Palestine University of Palestine Eng. Wisam Zaqoot Eng. Wisam Zaqoot.
Network Services Networking for Home & Small Business.
1 Multimedia Networking By Behzad Akbari Fall 2008 These slides are based on the slides of J. Kurose (UMASS)
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 4: Multimedia.
November 27 th, 2012 CS1652 Jack Lange University of Pittsburgh 1.
Quality of Service in the Internet The slides of part 1-3 are adapted from the slides of chapter 7 published at the companion website of the book: Computer.
Chapter 5: Summary r principles behind data link layer services: m error detection, correction m multiple access protocols m link layer addressing, ARP.
1 Multimedia Communication Multimedia Systems(Module 5 Lesson 2) Summary: r Internet Phone Example m Making the Best use of Internet’s Best-Effort Service.
1 Lecture 17 – March 21, 2002 Content-delivery services. Multimedia services Reminder  next week individual meetings and project status report are due.
CS640: Introduction to Computer Networks Aditya Akella Lecture 19 - Multimedia Networking.
Multimedia, Quality of Service: What is it?
Chapter 6 outline r 6.1 Multimedia Networking Applications r 6.2 Streaming stored audio and video m RTSP r 6.3 Real-time Multimedia: Internet Phone Case.
1 o characteristics – From an application-level API to the physical layer – CBR, VBR, ABR and UBR – Cell: bytes – Virtual circuits: virtual channel.
CMPT365 Multimedia Systems 1 Multimedia Networking/Communications Spring 2015 CMPT 365 Multimedia Systems.
03/11/2015 Michael Chai; Behrouz Forouzan Staffordshire University School of Computing Streaming 1.
Chapter 28. Network Management Chapter 29. Multimedia
Multimedia streaming Application Anandi Giridharan Electrical Communication Engineering, Indian Institute of Science, Bangalore – , India Querying.
Part 2: Making the Best of Best-Effort
E Multimedia Communications Anandi Giridharan Electrical Communication Engineering, Indian Institute of Science, Bangalore – , India Multimedia.
Multimedia Networking Quality of Services Hongli Luo, IPFW.
Computer Networking Multimedia. 11/15/20052 Outline Multimedia requirements Streaming Phone over IP Recovering from Jitter and Loss RTP QoS Requirements.
Presented by : BEN AMOR Adel MAKNI Mahmoud Ramzi
7: Multimedia Networking7-1 Chapter 7 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose,
E Multimedia Communications Anandi Giridharan Electrical Communication Engineering, Indian Institute of Science, Bangalore – , India Multimedia.
Multimedia: Conferencing 7-1. MM Networking Applications Fundamental characteristics: typically delay sensitive – end-to-end delay – delay jitter loss.
TCP/IP Protocol Suite 1 Chapter 25 Upon completion you will be able to: Multimedia Know the characteristics of the 3 types of services Understand the methods.
Ch 6. Multimedia Networking Myungchul Kim
Tutorial 11 Solutions. Question 1 Q1. What is meant by interactivity for streaming stored audio/video? What is meant by interactivity for real-time interactive.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 4: Multimedia.
Multimedia Networking7-1 Chapter 7 Multimedia Networking A note on the use of these ppt slides: We’re making these slides freely available to all (faculty,
Chapter 7 Multimedia Networking
19 – Multimedia Networking
University of Pittsburgh
Multimedia Applications
Multimedia networking: outline
Process-to-Process Delivery:
Multimedia networking: outline
Multimedia Applications
Process-to-Process Delivery: UDP, TCP
Presentation transcript:

Internet multimedia: simplest approach audio, video not streamed: r no, “pipelining,” long delays until playout! r audio or video stored in file r files transferred as HTTP object m received in entirety at client m then passed to player

Internet multimedia: streaming approach r browser GETs metafile r browser launches player, passing metafile r player contacts server r server streams audio/video to player

Streaming from a streaming server r This architecture allows for non-HTTP protocol between server and media player r Can also use UDP instead of TCP.

constant bit rate video transmission Cumulative data time variable network delay client video reception constant bit rate video playout at client client playout delay buffered video Streaming Multimedia: Client Buffering r Client-side buffering, playout delay compensate for network-added delay, delay jitter

Streaming Multimedia: Client Buffering r Client-side buffering, playout delay compensate for network-added delay, delay jitter buffered video variable fill rate, x(t) constant drain rate, d

Streaming Multimedia: UDP or TCP? UDP r server sends at rate appropriate for client (oblivious to network congestion !) m often send rate = encoding rate = constant rate m then, fill rate = constant rate - packet loss r short playout delay (2-5 seconds) to compensate for network delay jitter r error recover: time permitting TCP r send at maximum possible rate under TCP r fill rate fluctuates due to TCP congestion control r larger playout delay: smooth TCP delivery rate r HTTP/TCP passes more easily through firewalls

Streaming Multimedia: client rate(s) Q: how to handle different client receive rate capabilities? m 28.8 Kbps dialup m 100Mbps Ethernet A: server stores, transmits multiple copies of video, encoded at different rates 1.5 Mbps encoding 28.8 Kbps encoding

User Control of Streaming Media: RTSP HTTP r Does not target multimedia content r No commands for fast forward, etc. RTSP: r Client-server application layer protocol. r For user to control display: rewind, fast forward, pause, resume, repositioning, etc… What it doesn’t do: r does not define how audio/video is encapsulated for streaming over network r does not restrict how streamed media is transported; it can be transported over UDP or TCP r does not specify how the media player buffers audio/video

RTSP: out of band control FTP uses an “out-of-band” control channel: r A file is transferred over one TCP connection. r Control information (directory changes, file deletion, file renaming, etc.) is sent over a separate TCP connection. r The “out-of-band” and “in- band” channels use different port numbers. RTSP messages are also sent out-of-band: r RTSP control messages use different port numbers than the media stream: out-of-band. m Port 554 r The media stream is considered “in-band”.

RTSP Example Scenario: r metafile communicated to web browser r browser launches player r player sets up an RTSP control connection, data connection to streaming server

RTSP Operation

Real-time interactive applications r PC-2-PC phone m instant messaging services are providing this r PC-2-phone m Dialpad m Net2phone r videoconference with Webcams Going to now look at a PC-2-PC Internet phone example in detail

Interactive Multimedia: Internet Phone Introduce Internet Phone by way of an example r speaker’s audio: alternating talk spurts, silent periods. m 64 kbps during talk spurt r pkts generated only during talk spurts m 20 msec chunks at 8 Kbytes/sec: 160 bytes data r application-layer header added to each chunk. r Chunk+header encapsulated into UDP segment. r application sends UDP segment into socket every 20 msec during talkspurt.

Internet Phone: Packet Loss and Delay r network loss: IP datagram lost due to network congestion (router buffer overflow) r delay loss: IP datagram arrives too late for playout at receiver m delays: processing, queueing in network; end-system (sender, receiver) delays m typical maximum tolerable delay: 400 ms r loss tolerance: depending on voice encoding, losses concealed, packet loss rates between 1% and 10% can be tolerated.

constant bit rate transmission Cumulative data time variable network delay (jitter) client reception constant bit rate playout at client client playout delay buffered data Delay Jitter r Consider the end-to-end delays of two consecutive packets: difference can be more or less than 20 msec