Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno.

Slides:



Advertisements
Similar presentations
Program Degrad.1.0 Auger cascade model for electron thermalisation in gas mixtures produced by photons or particles in electric and magnetic fields S.F.Biagi.
Advertisements

Zhimin Wang Liu Ruoqing, Tang ChenYang, Charling Tao, Changgen Yang, Changjiang Dai, Tsinghua & IHEP , Shanghai.
Time Projection Chamber
I.Kreslo CHIPP workshop on Detector R&D, University of Geneva, June Development of Liquid Nitrogen Time Projection Chambers A. Ereditato,
Hiroyuki Sekiya Oct. 4 th 2007 Hamamatsu, JAPAN NNN07 Development of Gaseous Photomultiplier with GEM/μPIC Hiroyuki Sekiya ICRR, University of Tokyo
Hiroyuki Sekiya Jul. 31 st 2008, Philadelphia, ICHEP2008 Development of Gaseous Photomultiplier with GEM/μPIC Hiroyuki Sekiya ICRR, University of Tokyo.
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Gas Detector Developments Jin Li. Liquid Xenon case Liquid Xenon can be considered as a gaseous xenon of 520 atm. K.Masuda, S. Takasu, T.Doke et al. (Doke.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
D. Peterson, “ILC Detector Work”, Cornell Group Meeting, 4-October ILC Detector Work This project is supported by the US National Science Foundation.
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
S. Zuberi, University of Rochester Digital Signal Processing of Scintillator Pulses Saba Zuberi, Wojtek Skulski, Frank Wolfs University of Rochester.
St. Petersburg State University. Department of Physics. Division of Computational Physics. COMPUTER SIMULATION OF CURRENT PRODUCED BY PULSE OF HARD RADIATION.
Compton Camera development for the imaging of high energy gamma rays 1 Martin Jones UNTF 2010 Salford – April 14 th Martin.
A Direction Sensitive Dark Matter Detector
Fabio Sauli-CERN 1 IEEE-NSS Rome 04 F. Sauli, T. Meinschad, L. Musa, L. Ropelewski CERN, GENEVA, SWITZERLAND PHOTON DETECTION AND LOCALIZATION WITH THE.
Possibilities of TOF measurements on NPI neutron generators Mitja Majerle Department of Nuclear Reactions Nuclear Physics Institute ASCR.
Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions.
Chevron / Zigzag Pad Designs for Gas Trackers
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
11 th iWoRiD, Prague, Czech Republic Low-power Wide-dynamic-range Readout System for a 64-channel Multi-anode PMT of a Scintillation Gamma Camera Satoru.
K. Miuchi June 11, 2009 CYGNUS 09 NEWAGE electronics upgrade & QPIX Kentaro Miuchi (Kyoto University) with A. Sugiyama (Saga University) M. Tanaka (KEK),
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
Real-time Imaging of prompt gammas in proton therapy using improved Electron Tracking Compton Camera (ETCC)  TP C Pixel Scintillator Arrays (PSA) RI reagent.
Future work Kamioka Kyoto We feel WIMP wind oh the earth NEWAGE ~ Direction Sensitive Direct Dark Matter Search ~ Kyoto University Hironobu Nishimura
K. Miuchi K. Miuchi July 10, 2008 Dark Matter and Dark Energy Direction-Sensitive Dark Matter Search --NEWAGE-- Kentaro Miuchi (Kyoto University) (New.
NEWAGE Hironobu Nishimura ( Kyoto University) K. Miuchi T. Tanimori, H. Kubo, S. Kabuki, A. Takada, K. Hattori, K. Ueno, S. Kurosawa, T.Ida, S.Iwaki A.
F.Murtas1IMAGEM DDG GEM technology for X-ray and Gamma imaging IMAGEM l Detector setup l First results on X-ray imaging l First results on Gamma ray imaging.
CBM Muon Detection Workshop GSI Darmstadt, October 16 to 18, 2006
マイクロメッシュを用いた 高増幅率型 μ-PIC の開発 Development of  -PIC using micro mesh 1. Introduction 2. Test operation of prototype 3. Simulation studies 4. Summary 神戸大学.
Effects of Surrounding Materials on Proton-Induced Energy Deposition in Large Silicon Diode Arrays Christina L. Howe 1, Robert A. Weller 1, Robert A. Reed.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Development of a Gamma Camera Based on an 88 Array of LaBr3(Ce) Scintillator Pixels Coupled to a 64-channel Multi-anode PMT Hidetoshi Kubo, K.Hattori,
Experimental Nuclear Physics Some Recent Activities 1.Development of a detector for low-energy neutrons a. Hardware -- A Novel Design Idea b. Measure the.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. hashimoto, H. Tokieda, T. Tsuji, K. Kawase,
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
Development of an Electron-Tracking Compton Camera using CF 4 gas at high pressure for improved detection efficiency Michiaki Takahashi N. Higashi, S.
November 4, 2004Carl Bromberg, FNAL LAr Exp. Workshop Nov. 4-6, Liquid argon as an active medium Carl Bromberg Michigan State University & Fermilab.
PSD-V, London, September 1999 Two dimensional readout in a liquid xenon ionisation chamber V.Solovov, V.Chepel, A.Pereira, M.I.Lopes, R.Ferreira Marques,
Kamioka Kyoto We feel WIMP wind on the earth NEWAGE Direction-sensitive direct dark matter search with μ-TPC * 1.Dark.
Development of an Electron-Tracking Compton Camera with a Gaseous TPC and a Scintillation Camera for a Balloon-borne experiment (SMILE) Kazuki Ueno, Toru.
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
Single tube detection efficiency BIS-MDT GARFIELD Simulation GARFIELD Simulation Anode wire voltage as a function of the distance from the wire Electric.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
Single GEM Measurement Matteo Alfonsi,Gabriele Croci and Bat-El Pinchasik June 25 th 2008 GDD Meeting 1.
ZEPLIN III Position Sensitivity PSD7, 12 th to 17 th September 2005, Liverpool, UK Alexandre Lindote LIP - Coimbra, Portugal On behalf of the ZEPLIN/UKDM.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
A. Takada (Kyoto University)  Our motivation   -PIC and MeV gamma-ray telescope   -PIC applications  New type  -PIC.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
F.Murtas G.Claps, E.Baracchini 1 EDIT FrascatiOctober 22 h 2015 GEMPIX detectors : GEM with higly pixelated readout Introduction GEMPIX Detectors GEMPIX.
Precision Drift Tube Detectors for High Counting Rates O. Kortner, H. Kroha, F. Legger, R. Richter Max-Planck-Institut für Physik, Munich, Germany A. Engl,
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
MIMAC MIcro-tpc MAtrix of Chambers ( 3He + CF4) A Large TPC for non baryonic Dark Matter search Daniel Santos Laboratoire de Physique Subatomique et.
Triple GEM detectors : measurements of stray neutron.
A. Badertscher, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P
Low-power Wide-dynamic-range Readout System
Monte Carlo simulation of the GEM-based neutron detector
PADI for straw tube readout and diamonds for MIPs and for high precision tracking beam test – Jülich, Feb Jerzy Pietraszko, Michael Träger, Mircea.
PHOTON DETECTION AND LOCALIZATION WITH THE
A.Takada, A.Takeda, T.Tanimori
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
A DLC μRWELL with 2-D Readout
Presentation transcript:

Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno a, O. Bouianov b, M. Bouianov c a: Kyoto University b: Massachusetts Institute of Technology c:CSC-Scientific Computing Ltd. † Contact Address: Kentaro Miuchi Cosmic-Ray Group, Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, , Japan TEL +81(0) / FAX +81(0) Introduction 2.  -PIC 4.  -TPC (gas-filled operation) 5. Applications 6.Conclusions References [1] T.Nagayoshi, et al., Nucl. Instr. Meth. A 513(2003)277 [2] H.Kubo, et al. Nucl. Instr. Meth. A 513(2003)94 [3] K.Miuchi, et al., IEEE Trans. Nucl. Sci., 50(2003)825 [4] R.Orito, et al., Instr. Meth. A 513(2003)408, [5] T. Tanimori, et al., New Astronomy Rev. 48 (2004) 263 [6] K.Miuchi, et al., Nucl. Instr. Meth. A 517(2004)219 [7] T.Tanimori, et al., Phys. Lett. B 578 (2004) 241  -TPC : an “electric cloud chamber” REQUIREMENTS - Tracking minimum ionizing particles (MIPs) - Fine (sub-millimeter) samplings - Low ion-feedback  MeV gamma-ray camera [4,5] -  -TPC (recoil electron) + Scintillator (scattered gamma) - “electron track” gives event-by-event ray-tracing  Time-resolved neutron imaging[6] - n + 3 He → 3 H + p  -TPC : an “electric cloud chamber” DEVELOPMENT - 10×10×10 cm 3 detection volume - Fine tracking of proton, electron were shown. - First MIP tracks were detected. - Now we are entering the phase for “Applications”  Development [2,3] -  -PIC+ 8cm drift length - Digital-based electronics  PIC[1] “2-D imaging detector” -  m pitch, 120  m 2-D spatial resolution - Maximum gain 16000, operation gain 6000 (>1000hours) - PCB technology for large area (10×10 cm 2 in operation, 30×30cm 2 in development )  Ion feedback - Less than 30% for 10 4 cps/mm 2 X-ray (max 20keV)  Improvements - DAQ Clock rate 20MHz to 50MHz sampling ×2 - Amplifier time constant 16ns to 80ns S/N ×2 20mV 10mV  Dark matter experiment[7] - TPC is thought to be a very reliable method. - Low pressure operation: to be examined  MIP tracking - Ar-C 2 H 6 (80:20), 2atm - First “MIP tracks” were detected 3.  -TPC (gas-flow operation) hatched: Dark matter painted : neutron BG Operation gain : >10000 MIP’s energy deposition: ~4 ion-e pairs/400  m (in Ar gas, 1atm) Schematics of  -PIC 10  m  -PIC on the boardX-ray image by  -PIC 10×10cm 2 Edge projection 2cm Feedback measurementFeedback fraction Feedback fraction = I D / I A 30×30 cm 2  -PIC in development MIP tracks MeV gamma-ray images  -TPC system Data acquisition Amplifier modificationClock rate up Electron tracks Conceptual design Prototype Neutron (Simulation) Expected dark matter “wind” Neutron signals Gas vessel 128ch cable  System - Gas vessel: 60cm, diameter 20cm height - 128ch feed-through cable (5cm width, 0.3mm thickness) - 10cm drift length (1mm copper wires) Feed-through Anger camera only “event circle” by conventional Compton cameras DM WIND γ F F AMP 50 MHz 20 MHz 16ns amplifier 80ns amplifier PEM TPC AMP PEM Whole system ~500 keV electrons Ar-C 2 H 6 (90:10) gain ~6000 ~1MeV protons Ar-C 2 H 6 (90:10) gain ~3000 Cosmic-ray muons Ar-C 2 H 6 (80:20) 2atm gain >10000 Thermal neutrons Ar-CF He(78:20:2) 1.1 atm gain ~3000