Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: exercise 4.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.

Slides:



Advertisements
Similar presentations
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: static models and models with lags Original citation: Dougherty, C.
Advertisements

EC220 - Introduction to econometrics (chapter 5)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.7 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (chapter 4)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: exercise 6.7 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.16 Original citation: Dougherty, C. (2012) EC220 - Introduction.
COINTEGRATION 1 The next topic is cointegration. Suppose that you have two nonstationary series X and Y and you hypothesize that Y is a linear function.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: tests of nonstationarity: example and further complications Original.
============================================================ Dependent Variable: LGHOUS Method: Least Squares Sample: Included observations:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
ELASTICITIES AND DOUBLE-LOGARITHMIC MODELS
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
Lecture 9 Today: Ch. 3: Multiple Regression Analysis Example with two independent variables Frisch-Waugh-Lovell theorem.
EC220 - Introduction to econometrics (chapter 7)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: exercise 3.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
1 TIME SERIES MODELS: STATIC MODELS AND MODELS WITH LAGS In this sequence we will make an initial exploration of the determinants of aggregate consumer.
Lecture 4 This week’s reading: Ch. 1 Today:
EC220 - Introduction to econometrics (chapter 2)
1 Review of Correlation A correlation coefficient measures the strength of a linear relation between two measurement variables. The measure is based on.
So far, we have considered regression models with dummy variables of independent variables. In this lecture, we will study regression models whose dependent.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: testing a hypothesis relating to a regression coefficient (2010/2011.
EC220 - Introduction to econometrics (chapter 1)
1 INTERPRETATION OF A REGRESSION EQUATION The scatter diagram shows hourly earnings in 2002 plotted against years of schooling, defined as highest grade.
TESTING A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT This sequence describes the testing of a hypotheses relating to regression coefficients. It is.
SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: exercise 5.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
EC220 - Introduction to econometrics (chapter 12)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
DURBIN–WATSON TEST FOR AR(1) AUTOCORRELATION
TOBIT ANALYSIS Sometimes the dependent variable in a regression model is subject to a lower limit or an upper limit, or both. Suppose that in the absence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy variable classification with two categories Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: the effects of changing the reference category Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy classification with more than two categories Original citation:
DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES This sequence explains how to extend the dummy variable technique to handle a qualitative explanatory.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: Tobit models Original citation: Dougherty, C. (2012) EC220 - Introduction.
1 INTERACTIVE EXPLANATORY VARIABLES The model shown above is linear in parameters and it may be fitted using straightforward OLS, provided that the regression.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: binary choice logit models Original citation: Dougherty, C. (2012) EC220.
1 TWO SETS OF DUMMY VARIABLES The explanatory variables in a regression model may include multiple sets of dummy variables. This sequence provides an example.
1 PROXY VARIABLES Suppose that a variable Y is hypothesized to depend on a set of explanatory variables X 2,..., X k as shown above, and suppose that for.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.9 Original citation: Dougherty, C. (2012) EC220 - Introduction.
F TEST OF GOODNESS OF FIT FOR THE WHOLE EQUATION 1 This sequence describes two F tests of goodness of fit in a multiple regression model. The first relates.
MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE 1 This sequence provides a geometrical interpretation of a multiple regression model with two.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
. reg LGEARN S WEIGHT85 Source | SS df MS Number of obs = F( 2, 537) = Model |
SPURIOUS REGRESSIONS 1 In a famous Monte Carlo experiment, Granger and Newbold fitted the model Y t =  1 +  2 X t + u t where Y t and X t were independently-generated.
PARTIAL ADJUSTMENT 1 The idea behind the partial adjustment model is that, while a dependent variable Y may be related to an explanatory variable X, there.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: exercise 5.2 Original citation: Dougherty, C. (2012) EC220 - Introduction.
POSSIBLE DIRECT MEASURES FOR ALLEVIATING MULTICOLLINEARITY 1 What can you do about multicollinearity if you encounter it? We will discuss some possible.
(1)Combine the correlated variables. 1 In this sequence, we look at four possible indirect methods for alleviating a problem of multicollinearity. POSSIBLE.
COST 11 DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 This sequence explains how you can include qualitative explanatory variables in your regression.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: exercise 6.13 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.11 Original citation: Dougherty, C. (2012) EC220 - Introduction.
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
1 NONLINEAR REGRESSION Suppose you believe that a variable Y depends on a variable X according to the relationship shown and you wish to obtain estimates.
1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively,
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL The output above shows the result of regressing EARNINGS, hourly earnings in dollars, on S, years.
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
WHITE TEST FOR HETEROSCEDASTICITY 1 The White test for heteroscedasticity looks for evidence of an association between the variance of the disturbance.
1 COMPARING LINEAR AND LOGARITHMIC SPECIFICATIONS When alternative specifications of a regression model have the same dependent variable, R 2 can be used.
VARIABLE MISSPECIFICATION I: OMISSION OF A RELEVANT VARIABLE In this sequence and the next we will investigate the consequences of misspecifying the regression.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: exercise 4.5 Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 4). [Teaching Resource] © 2012 The Author This version available at: Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms

4.5* Download from the website the OECD data set on employment growth rates and GDP growth rates tabulated in Exercise 1.1, plot a scatter diagram and investigate whether a nonlinear specification might be superior to a linear one. 1 EXERCISE 4.5

2 The figure shows the employment growth rates and GDP growth rates for the sample of 25 OECD countries. EXERCISE 4.5

. reg e g Source | SS df MS Number of obs = F( 1, 23) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = e | Coef. Std. Err. t P>|t| [95% Conf. Interval] g | _cons | A linear regression produces quite plausible results. The slope coefficient indicates that e increases by 0.48 percent for each percent increase in g. This makes sense because part of the variation in g is due to variations in the growth of efficiency. EXERCISE 4.5

. reg e g Source | SS df MS Number of obs = F( 1, 23) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = e | Coef. Std. Err. t P>|t| [95% Conf. Interval] g | _cons | The intercept indicates that if there were no output growth, employment would shrink at the rate of 0.52 percent per year, again as a consequence of increasing productivity. EXERCISE 4.5

. reg e g Source | SS df MS Number of obs = F( 1, 23) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = e | Coef. Std. Err. t P>|t| [95% Conf. Interval] g | _cons | R 2 is quite high for a simple regression using cross-section data. EXERCISE 4.5

6 However, it is evident that the relationship is nonlinear. A double-logarithmic specification is ruled out by the negative values of e in the sample and the fact that the relationship clearly does not pass through the origin. EXERCISE 4.5

. g gsq = g*g. reg e g gsq Source | SS df MS Number of obs = F( 2, 22) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = e | Coef. Std. Err. t P>|t| [95% Conf. Interval] g | gsq | _cons | The quadratic form is an alternative that sometimes fits simple curves well. R 2 rises from 0.59 to EXERCISE 4.5

8 Visually the quadratic specification is a large improvement on the linear one. The most obvious defect is that it becomes downward-sloping for high values of g. EXERCISE 4.5

. g gsq = g*g. reg e g gsq Source | SS df MS Number of obs = F( 2, 22) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = e | Coef. Std. Err. t P>|t| [95% Conf. Interval] g | gsq | _cons | Note that the t statistic for the squared term is rather low. It is only just significant at the 5 percent level, using a one-sided test. (A one-sided test is justified here because we would not expect the sensitivity of e to g to increase with g.) EXERCISE 4.5

. g gsq = g*g. reg e g gsq Source | SS df MS Number of obs = F( 2, 22) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = e | Coef. Std. Err. t P>|t| [95% Conf. Interval] g | gsq | _cons | cor g gsq (obs=26) | gdp gdpsq g| gsq| However, a low t statistic is not surprising, given that g and gsq are highly correlated. EXERCISE 4.5

. g lgg=ln(g). reg e lgg Source | SS df MS Number of obs = F( 1, 23) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = e | Coef. Std. Err. t P>|t| [95% Conf. Interval] lgg | _cons | The semilogarithmic specification, with the explanatory variable logarithmic, is another possible specification. EXERCISE 4.5

12 Comparing it with the quadratic specification, it does have the advantage of not being downward-sloping for high values of g, but it exhibits excessive sensitivity to g for low values. R 2 is about the same as for the quadratic specification. EXERCISE 4.5

. g Z=1/g. reg e Z Source | SS df MS Number of obs = F( 1, 23) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = e | Coef. Std. Err. t P>|t| [95% Conf. Interval] Z | _cons | A further possibility is a hyperbolic function, with e being regressed on the reciprocal of g. EXERCISE 4.5

14 However R 2 is lower than in the previous specifications. e is systematically underestimated for high values of g and the specification exhibits excessive sensitivity to g for low values. EXERCISE 4.5

15 One reason for the poor performance of the hyperbolic function is that it is constrained to be asymptotically tangential to the vertical axis. EXERCISE 4.5

============================================================ Dependent Variable: e Method: Least Squares Sample: 1 25 Included observations: 25 Convergence achieved after 18 iterations e=C(1)+C(2)/(g+C(3)) ============================================================ CoefficientStd. Errort-Statistic Prob. ============================================================ C(1) C(2) C(3) ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criteri Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ 16 If we relax that assumption, we obtain a much better fit. Note that there is no way of linearizing this nonlinear specification. We have to use nonlinear least squares. EXERCISE 4.5

============================================================ Dependent Variable: e Method: Least Squares Sample: 1 25 Included observations: 25 Convergence achieved after 18 iterations e=C(1)+C(2)/(g+C(3)) ============================================================ CoefficientStd. Errort-Statistic Prob. ============================================================ C(1) C(2) C(3) ============================================================ R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criteri Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) ============================================================ 17 EViews was used instead of Stata for this purpose because its nonlinear least squares facility is much easier to use. To fit a nonlinear least squares specification in EViews, you write it as an explicit mathematical equation, with C(1), C(2), etc being the parameters. EXERCISE 4.5

18 This specification is compared with the semilogarithmic one. There is very little to choose between them, and indeed the quadratic specification is virtually as good, at least for the data range in the sample. EXERCISE 4.5

Copyright Christopher Dougherty 2001–2006. This slideshow may be freely copied for personal use