Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.

Slides:



Advertisements
Similar presentations
11-1 Last time □ Distance vector link cost changes ♦ Count-to-infinity, poisoned reverse □ Hierarchical routing ♦ Autonomous Systems ♦ Inter-AS, Intra-AS.
Advertisements

Computer Networking A Top-Down Approach Chapter 4.7.
Introduction 1 Lecture 22 Network Layer (Broadcast and Multicast) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Multicasting 1. Multicast Applications News/sports/stock/weather updates Distance learning Configuration, routing updates, service location Pointcast-type.
1  Changes in IPv6 – Expanded addressing capabilities (32 to 128 bits), anycast address – A streamlined 40-byte header – Flow labeling and priority –
Multicast on the Internet CSE April 2015.
Multicasting CSE April Internet Multicast Service Model Multicast group concept: use of indirection a host “sends” IP datagrams to multicast.
Multicast1 Instructor: Anirban Mahanti Office: ICT Slides are adapted from the companion web site of the textbook “
Multicast Routing: Problem Statement r Goal: find a tree (or trees) connecting routers having local mcast group members m tree: not all paths between routers.
Network Layer4-1 Spanning trees r Suppose you have a connected undirected graph m Connected: every node is reachable from every other node m Undirected:
Network Layer session 1 TELE3118: Network Technologies Week 8: Network Layer Multicast, Mobility Some slides have been taken from: r Computer Networking:
Chapter 4 IP Multicast Professor Rick Han University of Colorado at Boulder
Slide Set 15: IP Multicast. In this set What is multicasting ? Issues related to IP Multicast Section 4.4.
Review r The Internet (IP) Protocol m Datagram format m IP fragmentation m ICMP: Internet Control Message Protocol m NAT: Network Address Translation r.
ECE544: Communication Networks-II Spring 2011
11/4/ /6/2003 Routing in the Inet, IPv6, Mcast, Mobility November 4-6, 2003.
1 IP Multicasting. 2 IP Multicasting: Motivation Problem: Want to deliver a packet from a source to multiple receivers Applications: –Streaming of Continuous.
1 CSE 401N:Computer Network LECTURE-14 MULTICAST ROUTING.
Review r The Internet (IP) Protocol m Datagram format m IP fragmentation m ICMP: Internet Control Message Protocol m NAT: Network Address Translation r.
ECE544: Communication Networks-II Spring 2010 D. Raychaudhuri Lecture 6 Includes teaching materials from L. Peterson, J. Kurose, K. Almeroth.
© J. Liebeherr, All rights reserved 1 IP Multicasting.
Multimedia Networking #6 IP Multicast Semester Ganjil 2012 PTIIK Universitas Brawijaya.
© Janice Regan, CMPT 128, CMPT 371 Data Communications and Networking Multicast routing.
Network Layer4-1 R1 R2 R3R4 source duplication R1 R2 R3R4 in-network duplication duplicate creation/transmission duplicate Broadcast Routing r Deliver.
Multicast Sources: Kurose and Ross cast/addresstranslation_01.html.
Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Department of Computer and IT Engineering University of Kurdistan Computer Networks II Multicasting By: Dr. Alireza Abdollahpouri.
1 IP Multicasting By Behzad Akbari These slides are based on the slides of J. Kurose (UMASS) and Shivkumar (RPI)
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Multicasting. References r Note: Some slides come from the slides associated with this book: “Mastering Computer Networks: An Internet Lab Manual”, J.
CSC 600 Internetworking with TCP/IP Unit 8: IP Multicasting (Ch. 17) Dr. Cheer-Sun Yang Spring 2001.
1 Chapter 16b Multicasting. Chapter 16b Multicasting 2 Multicasting Applications Multimedia Multimedia –television, presentations, etc. Teleconferencing.
CS 5565 Network Architecture and Protocols Godmar Back Lecture 22.
Network Layer4-1 Networking Layer Slides originally prepared by Jim Kurose and Keith Ross (for their textbook Computer Networking: A Top Down Approach.
Broadcast and Multicast. Overview Last time: routing protocols for the Internet  Hierarchical routing  RIP, OSPF, BGP This time: broadcast and multicast.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks  4.3 What ’ s inside a router r 4.4 IP: Internet.
Chapter 22 Network Layer: Delivery, Forwarding, and Routing Part 5 Multicasting protocol.
IPv6. r Initial motivation: 32-bit address space soon to be completely allocated. r Additional motivation: m header format helps speed processing/forwarding.
© J. Liebeherr, All rights reserved 1 Multicast Routing.
IP Multicast COSC Addressing Class D address Ethernet broadcast address (all 1’s) IP multicast using –Link-layer (Ethernet) broadcast –Link-layer.
Broadcast and multicast routing. R1 R2 R3R4 source duplication R1 R2 R3R4 in-network duplication duplicate creation/transmission duplicate Broadcast Routing.
Introduction to Multicast Routing Protocols
© J. Liebeherr, All rights reserved 1 IP Multicasting.
Announcement r Project 3 out, due 3/10 r Homework 3 out last week m Due next Mon. 3/1.
Multicasting CSE 6590 Winter December 2015.
1 IP Multicasting Relates to Lab 10. It covers IP multicasting, including multicast addressing, IGMP, and multicast routing.
4: Network Layer4-1 Chapter 4: Network Layer Last time: r Internet routing protocols m RIP m OSPF m IGRP m BGP r Router architectures r IPv6 Today: r IPv6.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
CMPE 252A: Computer Networks Set 11:
4.6 Multicast at the Network Layer Introduction: The Internet multicast abstraction and multicast groups The IGMP Protocol Multicast.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
2/25/20161 Multicast on the Internet CSE 6590 Fall 2009.
Internet Multicasting Routing: DVMRP r DVMRP: distance vector multicast routing protocol, RFC1075 r flood and prune: reverse path forwarding, source-based.
Multicasting EECS June Multicast One-to-many, many-to-many communications Applications: – Teleconferencing – Database – Distributed computing.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
IPv6 Initial motivation: 32-bit address space completely allocated by Additional motivation: header format helps speed processing/forwarding header.
Multicast Outline Multicast Introduction and Motivation DVRMP.
ECE544: Communication Networks-II Spring 2013
What’s “Inside” a Router?
ECE544: Communication Networks-II Spring 2018
IP Multicasting By Behzad Akbari Fall 2008
Multicast on the Internet
Multicast Instructor: Anirban Mahanti Office: ICT 745
IP Multicast COSC /5/2019.
Optional Read Slides: Network Multicast
Presentation transcript:

Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol 4.5 Routing in the Internet 4.6 What’s Inside a Router? 4.7 IPv6 4.8 Multicast Routing 4.9 Mobility

Network Layer4-2 Chapter 4 quiz 1. What is the 32-bit binary equivalent of the IP address ? 2. Consider a router with three interfaces. Suppose all three interfaces use class C addresses. Will the IP address of the three interfaces necessarily have the same first eight bits? 3. Suppose an application generates chunks of 40 bytes of data every 20 ms and each chunk gets encapsulated in a TCP segment and then an IP datagram. What percentages of each datagram will be overhead and what percentage will be application data?

Network Layer4-3 Multicast: one sender to many receivers r Multicast: act of sending datagram to multiple receivers with single “transmit” operation m analogy: one teacher to many students r Question: how to achieve multicast Multicast via unicast r source sends N unicast datagrams, one addressed to each of N receivers multicast receiver (red) not a multicast receiver (red) routers forward unicast datagrams

Network Layer4-4 Multicast: one sender to many receivers r Multicast: act of sending datagram to multiple receivers with single “transmit” operation m analogy: one teacher to many students r Question: how to achieve multicast Network multicast r Router actively participate in multicast, making copies of packets as needed and forwarding towards multicast receivers Multicast routers (red) duplicate and forward multicast datagrams

Network Layer4-5 Multicast: one sender to many receivers r Multicast: act of sending datagram to multiple receivers with single “transmit” operation m analogy: one teacher to many students r Question: how to achieve multicast Application-layer multicast r end systems involved in multicast copy and forward unicast datagrams among themselves

Network Layer4-6 Internet Multicast Service Model multicast group concept: use of indirection m hosts addresses IP datagram to multicast group m routers forward multicast datagrams to hosts that have “joined” that multicast group multicast group

Network Layer4-7 Multicast groups  class D Internet addresses reserved for multicast:  host group semantics: oanyone can “join” (receive) multicast group oanyone can send to multicast group ono network-layer identification to hosts of members  needed: infrastructure to deliver mcast-addressed datagrams to all hosts that have joined that multicast group

Network Layer4-8 Joining a mcast group: two-step process r local: host informs local mcast router of desire to join group: IGMP (Internet Group Management Protocol) r wide area: local router interacts with other routers to receive mcast datagram flow m many protocols (e.g., DVMRP, MOSPF, PIM) IGMP wide-area multicast routing

Network Layer4-9 IGMP: Internet Group Management Protocol r host: sends IGMP report when application joins mcast group m IP_ADD_MEMBERSHIP socket option m host need not explicitly “unjoin” group when leaving r router: sends IGMP query at regular intervals m host belonging to a mcast group must reply to query query report

Network Layer4-10 IGMP IGMP version 1 r router: Host Membership Query msg broadcast on LAN to all hosts r host: Host Membership Report msg to indicate group membership m randomized delay before responding m implicit leave via no reply to Query r RFC 1112 IGMP v2: additions include r group-specific Query r Leave Group msg m last host replying to Query can send explicit Leave Group msg m router performs group- specific query to see if any hosts left in group m RFC 2236 IGMP v3: under discussion as RFC 3376

Multicast Routing: Problem Statement r Goal: find a tree (or trees) connecting routers having local mcast group members m tree: not all paths between routers used m source-based: different tree from each sender to rcvrs m shared-tree: same tree used by all group members Shared tree Source-based trees

Approaches for building mcast trees Approaches: r source-based tree: one tree per source m shortest path trees m reverse path forwarding r group-shared tree: group uses one tree m minimal spanning (Steiner) m center-based trees …we first look at basic approaches, then specific protocols adopting these approaches

Shortest Path Tree r mcast forwarding tree: tree of shortest path routes from source to all receivers m Dijkstra’s algorithm R1 R2 R3 R4 R5 R6 R i router with attached group member router with no attached group member link used for forwarding, i indicates order link added by algorithm LEGEND S: source

Reverse Path Forwarding if (mcast datagram received on incoming link on shortest path back to center) then flood datagram onto all outgoing links else ignore datagram  rely on router’s knowledge of unicast shortest path from it to sender  each router has simple forwarding behavior:

Reverse Path Forwarding: example result is a source-specific reverse SPT –may be a bad choice with asymmetric links R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member datagram will be forwarded LEGEND S: source datagram will not be forwarded

Reverse Path Forwarding: pruning r forwarding tree contains subtrees with no mcast group members m no need to forward datagrams down subtree m “prune” msgs sent upstream by router with no downstream group members R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member prune message LEGEND S: source links with multicast forwarding P P P

Shared-Tree: Steiner Tree r Steiner Tree: minimum cost tree connecting all routers with attached group members r problem is NP-complete r excellent heuristics exists r not used in practice: m computational complexity m information about entire network needed m monolithic: rerun whenever a router needs to join/leave